您要查找的是不是:
- Subrings satisfying ZC_n(ZI_n) of upper triangular matrix ring 上三角矩阵环满足ZC_n(ZI_n)的子环
- Graded Hereditary Triangular Matrix Rings 分次遗传三角矩阵环
- Graded nonsingular triangular matrix rings 分次非奇异三角矩阵环
- Properties of Graded Triangular Matrix Rings 分次三角矩阵环的性质
- Automorphisms of the Upper Triangular Matrix Ring over Commutative Rings 交换环上上三角矩阵环的自同构
- Automorphisms of the Strictly Upper Triangular Matrix Ring over Commutative Rings 交换环上严格上三角矩阵环的自同构
- Formal triangular matrix ring 形式三角矩阵环
- upper triangular matrix ring 上三角矩阵环
- triangular matrix ring 三级三角矩阵环
- Graded and Ungraded Properties of Polynomial Rings and Special Upper Triangular Matrix Rings 多项式环及特殊上三角矩阵环的分次与非分次性质
- Let D_(l+1)(R) be the orthogonal Lie algebra over a commutative ring R with 2 invertible and m_1 an l+ 1 upper triangular matrix. 设D_(l+1)(R)表示2为单位交换环R上的2(l+1)阶正交李代数。 若记m_1是R上的l+1阶三角矩阵,而是D_(l+1)(R)可解子代数。
- Triangular matrices, in particular, are usually quite tractable. 特别地,三角矩阵常是十分易于驾驭的。
- formal triangular matrix rings 形式三角矩阵环
- The elimination process leading to the eventual formation of an upper triangular matrix is then carried out. 于是进行导致最后形成一个上三角形矩阵的消去手续。
- triangular matrix rings 三级三角矩阵环
- Newman(1985[2]) suggested the following open problems:(1) In fieldF_2,determining all the number of squares in nxn matrix ring. Newman[2]提出以下几个未解决的问题:(1)在 F_2上,确定全体 n 阶平方次幂矩阵的数目。
- upper triangular matrix general ring 上三角矩阵一般环
- The authors characterize the forms of additive invertable operators preserving inverse matrix of the upper triangular matrix space over a field which characteristic is not 2 or 3 . 刻划了特征不为2及3的域上的上三角矩阵空间保逆矩阵的可逆加法算子的形式。
- In this paper we characterize idempotent preserving linear operators of upper triangular matrix R-algebra ?_n(R)over commutative integral domain R. We also determine involution preserving linear operators of ?_n(R) and R -algebra antomorphisms of ?_n(R). 刻划了交换整环R上的n×n上三角矩阵的R-代数?_n(R)的保幂等的线性算子,由此又确定了?_n(R)的保对合的线性算子以及R-代数自同构。
- Another useful property of triangular matrices is the ease with which their reciprocals may be calculated. 三角矩阵另一个有用的特性是容易用他们的倒数计算出来。