您要查找的是不是:
- LAGRANGE MULTIPLIER THEOREM OF EFFICIENT SOLUTION AND SADDLE POINT THEORY 有效解的Lagrange乘子定理与鞍点理论
- saddle point theory 鞍点理论
- Keywords second-order nonlinear difference equation;critical point theory;periodic solution;boundary value problem;Mountain Pass Lemma;Link Theorem;Saddle Point Theorem;disconjugacy; 二阶非线性差分方程;临界点理论;周期解;边值问题;山路引理;环绕定理;鞍点定理;非共轭性;
- This paper studies the saddle point and duality theory of set-valued optimization problems in the sense of strict efficiency. 摘要本文研究集值优化问题在严有效意义下的鞍点理论及对偶理论。
- This is a saddle point, I seek the use of C language procedures. 这是一个由本人求鞍点的用C语言编写的程序。
- A stationary point which is neither a local maximum nor a local minimum point is called a saddle point. 一个既不是局部极大点又不是局部极小点的平稳点称为一个鞍点。
- The rate of a process is based upon the energy barrier required to cross the corresponding saddle point, and a harmonic prefactor. 越过马鞍点和前因子所需的能量决定该过程的速度。
- An equavilent proposition of saddle point and a saddle point theorem in the sense of strict efficiency are given. 首先,给出集值优化问题在严有研究严有效意义下鞍点的一个等价命题和鞍点定理。
- Given data( not graphics), the Six Sigma Black Belt will be able to determine if the stationary point is a maximum, minimum or saddle point. 给定数据(是图形)6西格玛黑带应能确定驻点是最大值、小是还是马鞍点。
- It is found that when the control signal is added the original saddle point embedded in the spatiotemporal chaos is changed to an unstable focus. 研究发现,控制前时空混沌态中嵌入的鞍点,在施加控制信号后表现出不稳定焦点的行为。
- These saddle points represent points of stagnation of the current flow. 这些鞍点代表电流的驻点。
- Given data (not graphics), The Six Sigma Black Belt will be able to determine if the stationary point is a maximum, minimum or saddle point. 译文:给定数据(不是图形),六西格玛黑带应该能够确定驻点是最大值、最小值还是承受点。
- We have developed a method for doing this, using the dimer method for saddle point finding combined with the kinetic Monte Carlo to advance the system over barriers. 我们设计了一种寻找马鞍点二聚物法与蒙特卡罗法相结合的方法。
- We change the impact systems into a nonsmooth dynamical systems, we obtain criticalpoints using nonsmooth saddle point theorem which corresponding to our subharmonic solu-tions. 通过转化,我们将碰撞系统转化为一个非光滑动力系统,利用非光滑鞍点定理得到了一系列临界点,并证明此时我们所得的临界点就对应着原始模型的碰撞周期解。
- And then,Vector Fritz John saddle point and Vector Kuhn Tucker saddle point are defined in this space,the relations between them,and between the weak efficient solution of vector extremum problems and them are dicussed. 然后 ;在这种空间中定义向量 Fritz-John鞍点和向量 Kuhn- Tucker鞍点 ;我们讨论了其二者之间以及向量极值问题的弱有效解与他们的关系 .
- Then we concentrate on the construction of the discrete space of Lagrange multiplier, the space of mortar elements, and the conjugated gradient method for the related saddle point problem. 接着重点讨论了Lagrange乘子的近似空间 ,即粘接元 (mortarelements)空间的建立 ,以及所引起的离散鞍点问题的共轭梯度迭代解法。
- Note: If you wish your class to sketch trajectories for anything except saddle points, you will need to go beyond the discussion in the next. 注意:如果你愿你的班级除了鞍点以外为任何事描绘略图轨道,你将会需要在下一个中超越讨论。
- The basic technique used in this paper is the fixed point theory for dif-ferential equations in Banach space. 我们也找出弱解存在的最大时间范围,并探讨此解在趋近边界时的行为;此外,我们也证明了解对初值条件的连续性。
- The optimality conditions of saddle points, weakly duality theorem, strong duality theorem and converse duality theorem are obtained under convexity assumptions. 其次,在某种凸性假设下,研究严有效意义下鞍点最优性条件、弱对偶性、强对偶性、逆对偶性。
- Some efficient tools such as topological degree theory, fixed point theory and lower and upper method have been applied. 使用的主要方法有锥上的不动点理论、拓扑度理论和上下解方法等。