您要查找的是不是:
- Constructing Integal Number and Rational Number System via Equivalent Classes 籍等价分类法构建整数与有理数系统
- Rational Number Concepts.In R.Lesh &M. 主要研究方向:基础教育数学课程改革。
- A number system written to the base two notation. 一种使用以2为基数的记数法的数制。
- We say that the real number system is a continuum. 我们讲,实数系是一个连续集。
- The binary number system has two as its base. 二进制数字系统是以2为基数的。
- A rational number can be expressed as a ratio of two integers. 有理数可以被整数整除。
- The rational numbers also fit into this scheme. 有理数也适用于这个图形。
- The number that is raised to various powers to generate the principal counting units of a number system. 乘方数被提升到各种乘方上,产生数字系统内基本计算规则的数字
- We recall the notion of rational number, defined as a quotient of two integers. 我们回想有理数的概念,它定义为两个整数之商。R r
- The next page will describe the Base 10 number system. 下一页将描述以10为基底的数字系统。
- Provides a class that fully-encapsulates rational number operations. 提供的这个类完全封装了理性数字运算。
- By the conclusions above, we can go to another number system. 用以上的结论,我们可以学习另一个数字系统。
- It is not necessary to enter into the rational numbers. 已经没有必要去讨论有理数。
- You can choose your own numbering system. 您可以选择自己的编号系统。
- rational number system 有理数系
- Integers,rational numbers,and irrational numbers are all real. 整数、有理数和无理数都是实数。
- The two fractions represent a range of rational numbers. 这两个分数表示一个有理数区域。
- The digits following the prefix must be appropriate for the number system. 跟在前缀后面的数字必须适合于数制。
- Integers, rational numbers, and irrational numbers are all real. 整数、有理数和无理数都是实数。
- All the computers now being used are based on the binary number system. 现在所使用的一切计算机都以二进制为基础。
