您要查找的是不是:
- It works better than the [[quantum harmonic oscillator]] model, because it accounts for [[anharmonicity]], overtone frequencies, and combination frequencies. 相对[[量子谐振子]]模型,'''Morse 势'''更真实,因为它能描述[[非谐效应]],倍频,以及组合频率。
- two-dimensional coupled quantum harmonic oscillator 二维耦合量子谐振子
- 3D quantum harmonic oscillator with coordinate-momentum coupling 三模坐标-动量耦合量子谐振子
- Utilizing the General Linear Quantum Theroy to Solve the Two-dimensional Coupled Quantum Harmonic Oscillator 应用广义量子线性变换理论求解二维耦合量子谐振子
- three-dimensional coupled quantum harmonic oscillators 三模耦合量子谐振子
- quantum harmonic oscillator 量子谐振子
- Quantum dot gain spectra based on harmonic oscillator model are calculated including and excluding excitons. 基于谐振子模型的量子点能级;计算了包括和排除激子影响时多能级的增益谱.
- No atom behaves precisely like a classical harmonic oscillator. 任何一个原子的性能都不会同经典谐振子完全相同。
- We apply these set of rules to study three kind of typical quantum problems including harmonic oscillator, double well potential and impulse barrier penetration. 利用这套规则,我们研究了谐振子,双势阱和脉冲型势垒的透射这三种量子力学中典型问题的格林函数。
- For a harmonic oscillator the energy levels are evenly spaced. 对谐振子来说,能级是等间隔的。
- We can work out positions of a harmonic oscillator by numerical methods. 我们可以按数值方法计算简谐振子的位置。
- Thus far we have negative frictional effects in the harmonic oscillator. 到现在为止,我们一直没有考虑谐振子中的摩擦效应。
- Thus far we have negated frictional effects in the harmonic oscillator. 到现在为止,我们一直没有考虑谐和振荡器中的摩擦效应。
- The case of a harmonic oscillator driven by sinusoidally varying force is an extremely important one in many branches. 在许多领域中受正弦变化力策动的谐振子是一种十分重要的运动。
- The harmonic oscillator is an exceptionally important example of periodic motion. 谐振子在周期运动中是特别重要的。
- In this section we will increase our quantum-mechanical repertoire by solving the Schroedinger equation for the one-dimensional harmonic oscillator. 本节我们将用求解一维谐振子的薛定谔方程以提高我们的量子力学技能。
- The calculation method for the vibrational partition sums Qvib used is the harmonic oscillator approximation. 其中,转动配分函数考虑了离心扭曲修正,振动配分函数采用谐振子近似。
- This is a most useful form of the harmonic oscillator Hamiltonian and it will be encountered in several subsequent developments. 这是谐振子哈密顿算符最有用的形式,在下文中还会碰到这个表达式。
- The ground state energy and the wave function of a linear harmonic oscillator are solved by Euler equation comforted to functional extremum. 利用泛函极值满足的Euler方程 ;解出了线性谐振子的基态能量和波函数 .
- You are approached by a frenzied vault scientist, who yells:"i'm going to put my quantum harmonizer in your photonic resonation chamber!" what's your response? 你遇到一个疯狂得避难所科学家,他说:我打算将我得量子调谐器插进你得光子共振腔,你将作何反应?
