您要查找的是不是:
- Some Graph Theorectical Features of the Square Prime Number Module Congruence Relations 素数模平方同余关系的一些图论性质
- On the Solutions of Congruence Equations with Even Number Degree for Prime Number Module P = 3,5 关于素数模P=3、5的偶次幂同余方程的解
- prime number module [计] 素数模数
- Cray number crunchers discovered the largest prime number. 克来公司的电脑发现了世界上最大的素数。
- Of, relating to, or being a prime number. 质数的,素数的属于或关于素数的
- Which number on the card is a prime number? 在卡片上哪一个数字是最初的数字?
- Must be a prime number between 64 and 128 bytes long. 必须为长度在64字节和128字节之间的质数。
- Not all the odd numbers are prime numbers. 不是所有的奇数都是质数。
- The set of prime numbers is infinite. 素数集合是无限的。
- Its divisibility and prime number theorems overlap parts of number theory. 其可除性和质数定理部分与数论(number theory)重叠。
- Do you remember your school number? Let's see whether it's a prime number or sum number. 判断一下,你们各自的学号是质数还是合数。
- NHashSize The size of the hash table for interface pointer maps. Should be a prime number. 用于指针映射接口的哈希表的大小,必须是一个素数。
- The author discussed the number of solutions to binomial congruent equation on composite number module and established several theorems, which makes it more convenient to determine the number of solutions to binomial congruent equation. 针对合数模的二项同余方程的解数问题作了一些讨论,得到了有关的几个定理,利用此结果可以很简捷地确定二项同余方程的解的个数.
- Any odd prime number P has (p-1)/2 quadratic residue. This is the quadratic residue theorem. 任何奇素数p有(p-1)/2个二次剩余,此就是二次剩余定理。
- This paper gives a fast arithmetic for the RSA which includes finding the big prime number and th e fast Euclid. 本文给出了实现 RSA的快速算法 ,包括寻找大素数和欧几里德的快速实现。
- I just know the reason for using the number 24 since I learnt the concept of prime number and submultiple. 当然,我从加减开始,到乘除,再到平方和乘方。
- A prime number is a number that is has no proper factors (it is only evenly divisible by 1 and itself). 一个素数是除了自己和1以外没有别的整数可以整除它的数。
- Besides,the unascertained rational numbers module is introduced to calculate the concrete rebound value,which can set as an example when in the similar data processing situation. 同时提出了用未确知有理数模型进行回弹结果综合计算的模型,可为回弹法数据处理提供有效的参考。
- After that, there are more discussion about odevity, prime number and Goldbach's conjecture at the dinner table. 知道学习了质数和因数的概念以后,我才知道为什么要选择24这个数字。
- After this, on late dinner table many about odd and even number, prime number and Goldbach's conjecture discussion. 在这以后,晚餐桌上多了关于奇偶数、素数和哥德巴赫猜想的讨论。
