您要查找的是不是:
- In 1997,Andrew Beal conjectured that if A=B=C=1,m,n,r are all larger than 2,the equation has not positive integers solution. 1997年;Andrew Beal猜想:如果A=B=C=1;m;n;r均大于2;则该方程没有正整数解.
- Let r be an odd integer with r>1.In this paper the author gives a necessary condition for(X,Y,Z) being a positive integer solution of the equation X~2+Y~2=Z~r with Y being a power of an odd prime. 设r是大于1的奇数;给出了方程X2+Y2=Zr的正整数解(X;Y;Z)中Y为奇素数方幂的必要条件.
- Let(a,b,c) be a primitive Pythagorean triple with a is even. In this paper we prove that if c is a prime power,then the equation x~2+b~y=c~z has only the positive integer solution(x,y,z)=(a,2,2) with y is even. 设(a;b;c)是一组适合a为偶数的本原商高数;该文证明了:当c是素数方幂时;方程x2+by=cz仅有正整数解(x;y;z)=(a;2;2)可使y是偶数.
- In this paper, let p be an odd prime with p>3, we prove that the equation (xp-yp)/(x-y)=z2 has only the positive integer solution (x, y, z, p)=(3,1,11,5), satisfying x>y+1. gcd (x, y)=1. As a result, x is an odd prime power. 设p是大于3的奇素数,证明:方程2)()(zyxyxpp=--,1+>yx,1),gcd(=yx仅当p=5时有正整数解)11,1,3(),,(=zyx可使x是奇素数的方幂。
- Using the elementary methods, all the positive integer solutions of the equation are obtained.The solvability of the equation is solved completely. 利用初等方法,获得了方程的所有正整数解,完全解决了该方程的可解性问题。
- number of positive integer solution 正整数解数
- It is proved that if p>3 and D is not divisible by p or primes of the form 2kp+1,then the equation x~p-2~p=pDy~2 has no positive integer solutions (x,y) with gcd (x,y)=1. 本文证明了:当p>3时;如果D不能被p或2kp+1之形素数整除;则方程xp-2p=pDy2没有适合gcd(x;y)=1的正整数解(x;y).
- Please enter positive integers only. 请只输入正整数。
- Of or relating to positive integers. 自然数的属于或和自然数有关的
- Let x,n be positive integers,and let p be a prim e. 单位:茂名教育学院数学系广东茂名525000;
- positive integers solution 正整数解
- The Positive Integer Solution to a Class of Diophantine Equations 一类丢番图方程的正整数解
- A good choice for unique identifiers is to use positive integers. 正整数非常适合于用作唯一标识符。
- Let s,t be positive integers with gcd (s,t) = 1, s > t. 设s,t满足gcd(s,t)=1,s>t的正整数,a=2st,b=s~2-t~2,c=s~2+t~2。
- That can be put into a one-to-one correspondence with the positive integers. 可数的与正整数有一对一的对应关系的;可数的
- Subscript indices must either be real positive integers or logicals. 下标指标必须或者是真实的积极的整数逻辑。
- LAST INTEGER SOLUTION IS THE BEST FOUND! 以上整数解是最优解!
- How many four-digit positive integers have their product of digits even? 数字之积为偶数的四位正整数共有多少个?
- Capable of being put into one-to-one correspondence with the positive integers; countable. 可数的能够用正数一个一个地表示出来的;可数的
- Please enter a positive integer. 请输入正整数。
