您要查找的是不是:
- Multivariate splines are applied widely in approximation theory, computer aided geometric design and finite element method. 多元样条在函数逼近、计算几何、计算机辅助几何设计和有限元等领域中均有很广泛的应用。
- multivariate splines 多元样条函数
- multivariate spline 多元样条
- multivariate spline function 多元样条函数
- multivariate spline functions 多元样条函数
- In this treatise, we emphasize first-order splines. 在这一处理中,我们强调一级样条。
- Describes cardinal splines and how to draw them. 描述基数样条以及如何绘制基数样条。
- Shows how to draw Cardinal and Bezier splines. 演示如何绘制基数样条和贝塞尔样条。
- Quadratic splines need at least 3 points. 二次曲线样条至少需要3个点。
- Cubic splines need at least 5 points. 三次曲线样条至少需要 5 个点。
- Pick the splines you wish to union. 选择你想合并的曲线。
- Bezier splines need 4 points for each segment. 贝塞尔曲线样条每段需要4个点。
- Bezier splines need 3 points for each segment. 贝塞尔曲线样条每段需要 3 个点。
- Beveling the splines makes nice round edges. 倒角使漂亮的曲线轮边缘。
- Carl De Boor A Practical Guide to Spline. 样条函数实践指导。
- The prognosis was analyzed by Cox multivariate model. cox回归模型进行多因素预后分析。
- Describes a Bzier spline and how to draw one. 描述贝塞尔样条以及如何绘制贝塞尔样条。
- Outside surface is a spline through points. 外表是通过点的齿条。
- Adds a spline curve to the current figure. 向当前图形添加一段样条曲线。
- Creates an array of four points to define a spline. 创建一个包含四个点的数组来定义样条。