您要查找的是不是:
- Discovering maximum frequent itemsets is a key problem in many data mining applications. 发现最大频繁项目集是多种数据开采应用中的关键问题 .
- In this paper,a new kind of algorithms BFI-DMFI(Mining Maximum Frequent Itemsets) and BFI-DCFI(Mining Frequent Closed Itemsets) is proposed. 摘要 提出了基于频繁项集的最大频繁项集(BFI-DMFI)和频繁闭项集挖掘算法(BFI-DCFI)。
- In BFI-DMFI,we can confirm whether a frequent itemsets is also a maximum frequent itemsets through detecting whether exiting their superset itemsets in frequent itemsets. BFI-DMFI算法通过逐个检测频繁项集在其集合中是否存在超集确定该项集是不是最大频繁项集;
- The MFIA_VTL algorithm finds maximum frequent itemsets through partitioning itemsets search space based on the prefix in the database with the vertical tid-list of transactions. 该算法针对数据库的垂直事务标识列表结构对项集搜索空间进行基于前缀的划分,来发现最大频繁项集。
- In BFI-DCFI,in order to generate frequent closed itemsets,we can make use of mining maximum frequent itemsets from frequent itemsets which have equal support. BFI-DCFI算法则是通过挖掘所有支持度相等的频繁项集中的最大频繁项集组合生成频繁闭项集。
- Fast Mining of Global Maximum Frequent Itemsets 快速挖掘全局最大频繁项目集
- Research on Maximum Frequent Itemsets Mining Technology 最大频繁项目集挖掘技术研究
- Incremental Updating Algorithm for Mining Constrained Maximum Frequent Itemsets 约束最大频繁项目集的增量式更新算法
- Algorithms of Mining Global Maximum Frequent Itemsets Based on FP-Tree 基于FP树的全局最大频繁项集挖掘算法
- A Bit String Array-Based Mining Algorithm for Maximum Frequent Itemset 基于位串数组的最大频繁项目集挖掘算法
- A New Parallel Algorithm for Mining Maximum Frequent Itemsets Based on Maximum Complete Subgraph 一种基于极大完全子图的最大频繁项集并行挖掘算法
- Algorithm for Mining Constrained Maximum Frequent Itemsets Based on Frequent Pattern Tree 基于频繁模式树的约束最大频繁项目集挖掘算法研究
- An Algorithm and Its Updating Algorithm Based on Frequent Pattern Tree for Mining Constrained Maximum Frequent Itemsets 一种基于频繁模式树的约束最大频繁项目集挖掘及其更新算法
- An Algorithm Based on CIE-tree for Discovering Maximum Frequent Itemsets of Association Rules 基于CIE-树的关联规则最大频繁项集的求解
- maximum frequent itemsets 最大频繁项目集
- Maximum frequent itemset 最大频繁项集
- The problem of fuzzy constraint in frequent itemset mining is studied. 摘要研究频繁项集挖掘中的模糊约束问题。
- The famous algorithms to find the frequent itemsets include Apriori and FP-growth. 经典的生成频繁项目集集合的算法包括Apriori算法和FP-growth算法。
- Discovering frequent itemsets is a key problem in data mining association rules. 发现频繁项目集是关联规则数据开采中的关键问题。
- The HCM sketch uses breadth-first search strategy to identify and evaluate the hierarchical frequent itemsets. 基于该结构,利用广度优先查询策略,查找多层频繁项集和估计多层频繁项值。