您要查找的是不是:
- Of or relating to an irrational number. 无理数的无理数的或与无理数有关的
- Can an irrational number to an irrational power be rational? 一个无理数的无理数次方是否有可能是有理数?
- The logical definition of the irrational number is rather sophisticated. 无理数的逻辑主义是颇有些不自然的。
- This theory holds for all irrational numbers. 这个理论适用于所有的无理数。
- A certain constant has been adopted as a standard to use in exponential functions. It is an irrational number. 人们采用某常数作为指数函数中的底,这个常数是无理数。
- He produced his beautiful treatment of irrational numbers. 他对无理数作了出色的处理。
- Integers,rational numbers,and irrational numbers are all real. 整数、有理数和无理数都是实数。
- Integers, rational numbers, and irrational numbers are all real. 整数、有理数和无理数都是实数。
- But different from of Al-Khw arizmi,when the coefficient of quadratic equations is irrational number, Abu Kamil abandoned the geometry demonstration. 但是,与花拉子米不同,《代数书》中的几何证明,直接应用了欧几里得《原本》中的命题,只是在遇到具有无理系数的二次方程时,不得不放弃几何证明,这样一来,倒使得艾布·卡米勒的代数学具有了明显的算术化趋势。
- Rational numbers and irrational numbers together form the set of real numbers. 有理数与无理数一起构成实数。
- The same laws apply to you! This theory holds for all irrational numbers; The same rules go for everyone. 相同的法律使用于你;这个理论使用于所有的无理数。
- Though having entered into junior middle school, Xiaowang still can't make a distinction between rational numbers and irrational numbers. 虽然上初中了,可小王还是搞不清有理数和无理数。
- reducible quadratic irrational number 不可约二次无理数
- Further more, it validates the same conjecture about E,2 and other irrational numbers, and then the author extends the conclusion to all irrational numbers. 本文还验证了E、以及其它一系列无理数的“等可能”猜想,从而把猜想命题推广至所有的无理数。
- any rational or irrational number. 有理数和无理数的总称。
- When the coefficients of quadratic equations were irrational numbers, Abu Kdmil abandoned the geometry demonstration showing the trend of arithmetization. 而且,当遇到具无理系数的方程时,作者放弃了几何证明,具有明显的算术化趋势。
- Since the greater portion of these exponents is approximate values of irrational numbers, it follows that computations by means of logarithms give only approximate results. 因为大部分指数的计算结果是无理数的近似值,所以使用对数计算的结果也只是近似值。
- irreducible quadratic irrational number 不可约二次无理数
- This paper attempts to popularize the two conclusions in elementary mathematics:the deduction of "2 is one of the irrational numbers" and "the thermo of internal bisector for triangle". 推广了初等数学中“1/2是无理数”和“三角形内角平分线定理”两个推论,并给出了初等数学方法证明。
- The Application of Power Series to Prove the Irrational Number 幂级数在无理数证明中的应用