您要查找的是不是:
- Entry Trajectory Optimization Using Generalized Lagrange Multiplier 用广义乘子法求解航天器最优平面再入轨迹
- general Lagrange multiplier 广义拉氏乘子
- generalized Lagrange multipliers 广 义拉格朗日乘子
- For the geometry depicted in Figure 2-2, the lagrange multiplier is positive. 对于图2-2中所画的几何图形来说,拉格朗日乘子是正的。
- There is also a comprehensive treatment of optimality conditions, Lagrange multiplier theory, and duality theory. 这门课程也包括了对最适化条件,拉格朗日乘数理论,和对偶理论的综合论述。
- A Theory of Variational Assimilation with Kalman Filter - Type Constraints: Bias and Lagrange Multiplier. 卡门滤波器型限制的变分同化理论:偏差和拉格朗日放大器。
- A K-K-T point and corresponding Lagrange multiplier of MOP are obtained by tracking numerically this path. 数值追踪这条路径;可以得到多目标规划问题(MOP)的K-K-T点及相应的Lagrange乘子.
- Combined with Lagrange multiplier method, a new continuum structural topologic optimization method is proposed. 结合拉格朗日乘子法,形成了一种新的连续体结构的拓扑优化方法。
- Thirdly, this paper extends the NMM to practical and more efficient FEM meshes, imposing the essential boundary conditions with Lagrange multiplier. 该文将数值流形方法扩展于实用高效的有限元网格,引入拉格朗日乘子法处理边界条件。
- The conditions of compatibility at the interfaces between each subdomain are satisfied weakly by a Lagrange multiplier technique. 电磁波通过子域交界面的约束条件是通过引入Lagrange乘子而弱满足 .
- Finally, problems which should be paid attention in using the Lagrange multiplier method given in the paper are pointed out. 并指出应用文[2]所指Lagrange乘子法时应注意的问题.
- The Lagrange multiplier method is one of the approaches for determining conditional extremum of function in Advanced Mathematics. Lagrange乘数法是《高等数学》中求函数条件极值的一种方法。
- Enforce essential boundary conditions using Lagrange multipliers. 用拉氏乘子加强本征边界条件。
- A Lagrange multiplier based fictitious domain method for the Dirichlet problem of a class of linear elliptic operators is discussed. 本文首先讨论了一类椭圆型算子Dirichlet问题的基于Lagrange乘子的虚拟区域方法。
- Then its generalized variational principle is established on the basis of Lagrange multiplier method by absorbing the first kind of boundary condition. 然后利用拉格朗日乘子法,吸收第一类边界条件,从而得出其广义变分原理;
- It is composed of variable neurons, Lagrange multiplier neurons and Kuhn-Tucker multiplier neurons which are interconnected. 该模型由交量神经元、Lagrange乘子神经元和Kuhn-Tucker乘子神经元相互连接构成。
- By introducing penalty function terms,the problems,which would arise in the case of pure Lagrange multiplier method or penalty function method. 通过附加惩罚函数项,克服了单纯使用拉格朗日乘子法或惩罚函数法时存在的问题。
- An inequality was proved by using the theory of conditional extremum on funtions of several variables and lagrange multiplier method. 应用多元函数条件极值理论和Lagrange乘数法去证明一个不等式。
- The general variational principle is employed in communicating information between subdomains with Lagrange multipliers, which yields a reduced-order coarse problem. 根据广义变分原理,采用拉格朗日乘子在子区域之间交换信息,并建立其相应的粗问题。
- This method treats Dirichlet boundary condit ion via a Lagrange multiplier technique and is well suited to the no-slip bound ary condition in viscous flow problems. 这种方法通过 Lagrange乘子技术来处理 Dirichlet边界条件 ,因而非常适用于粘性流动问题中的无滑移边界条件。