您要查找的是不是:
- dirichlet theorem 狄利克雷定理
- lagrange dirichlet theorem 拉格朗日 狄利克莱定理
- Xu Haixiang got the same identity about a general quasilinear Euler equations which about homogeneous Dirichlet problem by divergence theorem. 徐海祥等利用散度定理也对一般的拟线性Euler方程组的齐次Dirichlet问题建立了类似的恒等式。
- Let us restate the assertions above as a theorem. 我们把上述的断言重新表述为一个定理。
- The second proof of Theorem 26 is due to James. 定理26的第二个证明属于詹姆斯。
- Theorem g is called binomial theorem. 定理g称为二项式定理。
- This completes the proof of the convexity theorem. 这就完成了凸定理的证明。
- This calculation illustrates the theorem. 这个计算说明了这样一个定理。
- We call this principle a rule and not a theorem. 我们称这个法则为原理而不称为定理。
- We have thus arrived at the very important theorem. 这样我们就得了一条很重要的法则。
- The theorem may be explained as follows. 这条原理可以这样来阐述。
- This method helps to obtain a remarkable theorem. 这一方法有助于得出一著名的定理。
- His theorem can be translated into simple terms. 他的定理可用更简单的术语来解释。
- Theorem 2 ABd method is absolutely stable. 定理4 PAEI方法在M‘/2范数意义下是绝对稳定的.
- The main results are theorem 5 anc theorem 9 . 主要结果是定理5和定理9,宅是文[4]的继续。
- This is the "Kos theorem" Wu edition. 这是 “科斯定理”的张五常版。
- Poynting's Theorem and the Poynting Vector S. 波印廷定理及波印廷向量S。
- Methods Use the properties of primitive Dirichlet characters and the conductor. 方法利用特征的导出模的定义以及原特征的性质。
- Two fomes of STOLZ theorem are given and extend. 给出STOLZ定理的两种形式并把它们进行了推广,讨论了它们的应用。
- A three critical point theorem is proved. 证明了一个三临界点定理。