您要查找的是不是:
- cotangent trigonometric 三角余切
- English astronomer and mathematician who invented a surveying chain, quadrant, and scale and introduced the trigonometric terms cosine and cotangent. 冈特,埃德蒙1581-1626英国天文学家和数学家,发明了测链,象限仪和标尺,并引进了两个三角学术语,余弦和余切
- Mathematic function that returns the trigonometric cotangent of the specified angle, in radians, in the given float expression. 在给定float表达式中以弧度形式返回给定角度的三角余切的数学函数。
- English astronomer and mathematician who invented a surveying chain,quadrant,and scale and introduced the trigonometric terms cosine and cotangent. 冈特,埃德蒙1581-1626英国天文学家和数学家,发明了测链,象限仪和标尺,并引进了两个三角学术语,余弦和余切
- Some Simple Uses for Trigonometric Functions. 三角函数一些简单的应用。
- Trigonometric functions use radian mode for angles. 三角函数的角度使用弧度模式。
- Whether to show trigonometric buttons. 是否显示三角函数按钮。
- The following example returns the cotangent of various angles. 下面的示例返回多个角度的余切
- We might prefer to stick to trigonometric functions. 我们可能宁愿拘泥于使用三角函数。
- Performing trigonometric and other mathematical calculations. 执行三角法计算和其他数学计算。
- The trigonometric functions are defined for right triangles. 三角函数是对直角三角形定义的。
- This line, called a cotangent line, is used by the system to modify the curve. 这条线叫做共切线,是系统用来改变曲线形状的。
- Exponential and trigonometric Functions: read Chapter 2 and do exercises. 指数和三角函数:阅读第二章以及做练习题。
- The same results were also deduced by trigonometric functional operation. 并根据三角函数推导得出结果一致。
- Each kind of wave may use the trigonometric function equation to express. 各种波形曲线均可以用三角函数方程式来表示。
- The inverse function of that restricted cotangent function is called the arccotangent function. 被限定的余切函数之反函数叫做反余切函数。
- It will be assumed that the reader is familiar with logarithms and trigonometric functions. 我们还希望读者能熟悉对数和三角函数。
- The expression for g can be rewritten in terms of trigonometric sines and cosines. 关于g的表达式可以重写成三角函数的正弦和余弦形式。
- If the system cannot find a cotangent line, the error message "Cannot remove the specified inflections" appears. 如果系统找不到一条共切线,错误信息就会出现:"Cannot remove the specified inflections"。
- A new cotangent theorem is deduced to solve the nonlinearity for bearing-only measurement. 通过新提出的余切关系定理,解决了单站纯方位观测的非线性问题。