您要查找的是不是:
- In section 2.2, it is proved that if an expansive homeomorphism of a compact metric space have the POTP, then it has the POTP in its basic sets. 2节证明了:对于紧致度量空间上的自同胚,若它有伪轨跟踪性且是膨胀的,则它在链分支上保持伪轨跟踪性。
- It is proved that a homeomorphism on a compact metric space with the average shadowing property has only one chain component which is the whole space. 证明了紧致度量空间上具有平均伪轨跟踪性质的同胚只有一个链分支,这个链分支就是全空间。
- Results Three selfmappings theorem of existing and unique of common fixed point were buit, a new theorem of common fixed point in compact metric space was obtained. 结果建立了紧度量空间中3个自映象的公共不动点的存在性和唯一性定理,得到了一个新的公共不动点定理。
- At the same time, it is shown that on many compact metric spaces there exist TDS for which the whole space is a chaotic set. 上述结果提供了解决类似问题的一般框架并且覆盖了十几年来相关问题研究中的几乎所有结果。
- On Fixed-Point Theorem in Compact Metric Space 关于紧度量空间中的不动点定理
- Fixed Points on Two Complete and Compact Metric Spaces 完备和紧度量空间中的不动点
- For a continuous map ? from a compact metric space to itself, it is shown that (1) ? has AASP if and only if so does the shift map on its inverse limit space; 对于紧致度量空间上的连续映射?,证明了:(1)?有AASP当且仅当其逆极限空间上的移位映射有AASP;
- compact metric space 紧度量空间
- locally compact metric space 局部紧度量空间
- Fixed Point Theorems for Mappings Satisfying an Implicit Relation on Two Complete and Compact Metric Spaces 在两个完备紧致度量空间上满足隐含关系映射的不动点定理
- compact metric spaces 紧度量空间
- locally compact metric spaces 局部紧度量空间
- Logical metric space is an importent frame in approximate reasoning. 摘要逻辑度量空间是近似推理的重要框架。
- In this paper, an internal characterization of the compactcovering compact images of lo-cally separable metric spaces is given. 给出了局部可分度量空间的紧复盖紧映象的刻画。
- Let A(u),u U be perturbation subests of a linear metric space E and C(u), U be perturbation comex cones of E . 设A(u),uU,是线性度量空间E中的受扰动的非空子集。 C(u),uE从是E中受优动的凸锥。
- Methods The commutative condition of selfmapping pairs are applied in metric space. 方法利用度量空间中自映象对的可交换性条件。
- Aim In order to develop and improve the fixed point theorem in metric space and extend the application. 摘要目的为了进一步发展和完善度量空间中的不动点理论,扩展不动点定理的应用范围。
- Metric space is a specific topological space, and it is an important process to understand topological space. 摘要度量空间是一类特殊的拓扑空间,并且它是理解拓扑空间的一个重要过程。
- The reals are a contractible (hence connected and simply connected), separable metric space of dimension 1, and are everywhere dense. 由于实数集中只有可数集个数的元素可能是代数数,绝大多数实数是超越数。
- In finite dimensional space form a bounded open domain, we study some open convex subsets and it's topology, then give a complete metric space. 摘要考虑了在有限维空间中包含在某一有界开区域中的所有有界开凸子集所成空间上的拓扑,给出了一个相关的完备的度量空间。