您要查找的是不是:
- cohomology functor 上同弹子
- trivial cohomology functor 平凡上同弹子
- Functor returns the marked price as output. 仿函数就返回标签价格作为输出。
- How to use local type as functor? 似乎不能接受局部类型。难道没有变通方法?
- Throws : If the hash functor throws. 抛出:如果散列函数抛出。
- Throws : If the comparison functor throws. 抛出:如果比较函数抛出。
- Method uses two constructs provided by the Apache Functor library. 方法使用由Apache Functor库提供的两个结构。
- Functor takes a binary function and two unary functions as input. 仿函数取一个二元函数和两个一元函数作为输入。
- You used this functor twice for binary composition in Listing 4. 在清单4中对二元合成使用这个仿函数两次。
- These two theorems will be derived later from results on nonabelian cohomology. 这两个定理将在后面由非交换上同调的结果推出。
- The proof shows that any functor which is a left adjoint is right exact. 该证明指出,任一函子,如果是一个左伴随,就右正合。
- A function or functor, as usual, may be attached to the symbol table. 通常,可以将一个函数或仿函数附加至符号表。
- Later Chen and Hu[CH] give adeRham model to compute the Chen-Ruan cohomology ring of abelian orbifold. 最近;B.;Chen 和S
- Many properties of twisted conjugate actions can be expressed by the language of nonabelian cohomology, and vise versa. 扭共轭作用的很多性质可以用非交换上同调的语言来表述,反之亦然。
- For applications to homotopy theory we also discuss by way of analogy cohomology with arbitrary coefficients. 蔡皋把想象的虚无缥缈的乌托邦具象化。让人感觉到一个实实在在的桃花源。
- But twisted conjugate actions of Lie groups have closed relation with nonabelian cohomology of cyclic groups with coefficients in Lie groups. 而李群的扭共轭作用与循环群以李群为系数的非交换上同调有非常密切的关系。
- Chen and Ruan[CR1] defined a very interesting cohomology theory for orb-ifold, which is now called Chen-Ruan cohomology. Chen 和Y.;Ruan[CR1] 对orbifold 定义了一种非常有意义的上同调理论;现在称为Chen-Ruan 上同调
- The discussion from here forward will incorporate examples based on the Apache Commons Functor library. 从这以后的讨论将结合基于Apache Commons Functor库的例子。
- Further, we've generalized the famous Liouville's theorem in classical mechanics and linked the Noether theorem with the cohomology. 提出相空间上保体积的一般方程,通常的正则方程是其特殊形式;
- Functor passing in the outcome of the previous evaluation as parameter to this one. 仿函数,然后用前一个计算的输出作为参数计算。