您要查找的是不是:
- Selection of secure elliptic curves 安全椭圆曲线的选择
- The core of choosing a secure elliptic curvefor elliptic curve cryptosystems is the calculation of the order of a randomly selected elliptic curve. 选取安全椭圆曲线的核心步骤是对椭圆曲线阶的计算。
- A secure elliptic curve, combined threshold scheme, verifiable secret share scheme with proactive secret share scheme is selected to make sure security requirement. 本文基于安全的椭圆曲线,结合门限体制、可验证秘密共享体制以及主动秘密共享方案,给出一种新的入侵容忍签字方案。
- Selection and Implementation of Secure Elliptic Curves of Prime Order over Finite Field 有限域上素数阶的安全椭圆曲线的选取及实现
- seventhly, we realize the ECC on two secure elliptic curves, including ECDH, ECES, ECDSA. 第七,实现了两条安全椭圆曲线上的椭圆曲线密码体制,包括ECDH,ECES,ECDSA。
- Round these two respects, how to structure security elliptic curve cryptography and the implementations of ECC is first discussed in this paper. 围绕这两个方面的问题,本文首先讨论了如何构造安全的椭圆曲线密码体制和椭圆曲线密码体制的应用;
- Production of secure elliptic curve based on MPI 产生安全椭圆曲线的MPI并行实现
- Secure Elliptic Curves 安全椭圆曲线
- A Selection of the Secure Elliptic Curve and Fast Calculation of Scalar Multiplication 一类安全椭圆曲线的选取及其标量乘法的快速计算
- A scheme of secure message interchange based on Elliptic Curves Cryptosystem (ECC) is proposed in this paper.The digital signature and symmetric key exchange in the scheme both are established on ECC. 提出一种基于ECC的消息安全交换方案,实现建立在ECC之上的消息安全交换的数字签名和加密消息的会话密钥交换。
- What this section does is introduce in a purely computational way some important facts about elliptic curves. 本节从纯计算的角度介绍椭圆曲线的一些重要性质。
- In your lecture, I ask you to introduce the congruent number problem, and show exactly how it translates into a problem about elliptic curves. 在你的演讲中,你要介绍同余数问题,以及它如何转化成椭圆曲线问题。
- This patent family covers the use of certain types of elliptic curves that offer significant benefits in security and computational efficiency. 此专利系列涵盖特定类型椭圆曲线的使用,这些椭圆曲线可以在安全性和计算效率方面提供极大的帮助。
- Finally, the implementation of the elliptic curves over prime fields was studied. An ECIES-KEM algorithm combined AES with ECC was proposed. 最后,讨论了基于大素数域GF(p)上的椭圆曲线密码体制(ECC)算法,并给出了一个结合AES算法的椭圆曲线混合加密方案(ECIES-KEM)。
- Using bilinear pairings of the elliptic curves or hyperelliptic curvers,presented an ID-based proxy blind signature scheme. 利用双线性映射构造了一种基于身份的不可链接的代理盲签名。
- One primary problem in ECC is the selection of secure elliptic curves. If the selectedcurve is insecure, any scheme based on this curve is insecure too. 在椭圆曲线密码体制中,一个主要的问题就是安全椭圆曲线的选取问题,如果选取的椭圆曲线本身是不安全的,那么基于该椭圆曲线的任何方案都是不安全的。
- In this paper we give a classification of elliptic curves over finite field Fp by the cardinality of elliptic curves and deduce some properties. 在这篇文章里;我们利用椭圆曲线的阶给出了椭圆曲线的一个分类;并推导出一些性质.
- An efficient directed signature scheme based on identity is presented which makes use of bilinear parings on elliptic curves. 提出了一个基于身份的有向签名方案。
- And then a though analyzing has been made to the foundation of cryptography, elliptic curves and ECC, as well as introduce some accomplish schemes and attack means. 然后就密码学基础,椭圆曲线以及椭圆曲线密码体制相关理论进行了较为深入的分析和研究,并介绍了一些主要的椭圆曲线密码体制的具体实现方案和攻击方法;
- Applying the verifiable joint secret redistribution protocol, two classes threshold proxy threshold signature scheme based on ECC(elliptic curves cryptosystem) is proposed. 应用可验证的联合共享秘密再分配协议,设计了一个基于椭圆曲线密码体制的两级门限代理门限签名方案。
