您要查找的是不是:
- THE COEFFICIENTS OF PRIMITIVE POLYNOMIAL OVER FINITE FIELD 有限域上本原多项式系数的研究
- Polynomial over finite field 有限域上多项式
- The techniques for constructing extension fields are typically more involved than those for constructing prime fields and draw largely from the theory of polynomials over finite fields. 构造扩展域的技术比那些构造素数域的要复杂的多,而且大多数是建立在基于有限域的多项式理论基础上的。
- Polynomial Transform Over Finite Field 有限域上的多项式变换
- Spectra characterizations of nonsigular feedback polynomials over finite fields and residue class rings 有限域和剩余类环上非奇异反馈多项式的谱刻划
- In this paper we give a classification of elliptic curves over finite field Fp by the cardinality of elliptic curves and deduce some properties. 在这篇文章里;我们利用椭圆曲线的阶给出了椭圆曲线的一个分类;并推导出一些性质.
- Secondly, one construction of Cartesian authentication code from norm form of one class of nilpotent matrices over finite field is presented and its size parameters are computed. 第二部分利用有限域F_q上一类幂零阵的相似标准形,构作了一个笛卡尔认证码,并计算出该码的所有参数。
- The elliptic curve discrete logarithm of non singular elliptic curve over finite field has no efficient attack up to now, which made it cannot be widely applied in cryptography. 摘要目前,在有限域上非奇异椭圆曲线离散对数问题还没有有效的攻击方法,使其在加密技术中得到了广泛应用。
- In this paper, We will prove that two ranks projective special linear group PSL2(7) over finite field GF(7) and linear transformation group GL3(2) are isomorphism. 文章证明了投射特殊线性群PSL2(7)(定义在有限域GF(7)上)和线性变换群GL3(2)是同构的。
- Multiplication over finite field is the most time consuming operation in implementing ECC, Actually multiplication over finite field is modular multiplication, The cryptographic processor performs multiplication over finite field GF(2~n) for ECC. 实现椭圆曲线密码系统最费时的就是有限域上的乘法,有限域上的乘法实际上是模乘,该协处理器能够为ECC处理有限域GF(2~n)上的乘法运算。
- We survey some recent results on codes from algebraic curves over finite fields. 本文概述了有限域代数曲线上的码的一些最近结果.
- Among the basic arithmetic operations over finite fields, the computation of multiplicative inverse is the most time consuming operation. 在有限域的基本运算中,乘法逆元的计算是最费时间的运算。
- A construction of authentication codes with arbitration from subspace of vector space over finite fields is presented, the parameters of the code are computed. 摘要利用有限域上向量空间的子空间构作了一个具有仲裁的认证码,计算了这个码的参数。
- A construction of authentication codes with arbitration from subspaces of singular symplectic geometry over finite fields is presented, the parameters of the code are computed. 摘要利用有限域上奇异辛几何的子空间构造了一个具有仲裁的认证码,并计算了这个码的参数。
- This paper describes a new construction of authentication codes with arbitration using sympletic geometry over finite fields, and their size parameters are computed. 笔者给出了利用有限城上的辛几何构造一个具有仲裁的认证码,计算了其容量参数。
- A construction of authentication codes with arbitration from subspace of vector space over finite fields is presented,the parameters of the code are computed. 利用有限域上向量空间的子空间构作了一个具有仲裁的认证码,计算了这个码的参数。
- Count of Some Matrixes over Finite Field 有限域上一些矩阵的计数
- multi-output function over finite field 有限域上多输出函数
- In this paper,one construction of Cartesian authentication codes from the normal form of unitary involutory matrices over finite fields are presented and its size parameters are computed. 本本文利用有限域上的一类特殊的酉对合矩阵的相似标准型构作了一个笛卡儿认证码并计算出该码的所有参数。
- In 1989, Neal Koblitz proposed the hyperelliptic curvecryptosystems (HCC) as anatural generalization of ECC. HCC is based on the discretelogarithm problem on theJacobian of hyperelliptic curves over finite fields. 作为椭圆曲线的一个推广,Neal Koblitz在1989年提出了超椭圆曲线密码体制(HCC),它是基于有限域上超椭圆曲线的Jacobian上的离散对数问题。