您要查找的是不是:
- Fourier diffraction theorem 傅立叶衍射定理
- Extended Fourier diffraction theory was used, and a relation of function depended on incident angle. 该方法是傅里叶衍射理论的扩展,是一种依赖于入射角的函数。
- However, analysis of transfer function with Fourier diffraction theory will be inadequate, and shadowing effects must be considered for oblique illumination. 因此本文针对交替式相移掩模,提出了一种考虑阴影效应的近似模型。
- Fourier diffraction projection theory 傅立叶衍射投影定理
- Principles of Fourier Optics and Diffraction. 傅立叶光学和衍射原理。
- Let us restate the assertions above as a theorem. 我们把上述的断言重新表述为一个定理。
- Another important wave phenomenon is diffraction. 另一个重要的波现象是衍射。
- The second proof of Theorem 26 is due to James. 定理26的第二个证明属于詹姆斯。
- Theorem g is called binomial theorem. 定理g称为二项式定理。
- To undergo or cause to undergo diffraction. 使衍射产生或导致衍射
- This completes the proof of the convexity theorem. 这就完成了凸定理的证明。
- First course in wavelets with fourier analysis II. 小波与傅里叶分析基础2。
- A Fourier transform does this, but with waves. 傅立叶变化就是这样,但是它是按照波的情况。
- Diffraction, too, occurs in light waves. 衍射也是由光波产生。
- The first one needs the Fourier counterchange. 第1种方法需要进行傅立叶变换计算;
- This calculation illustrates the theorem. 这个计算说明了这样一个定理。
- We call this principle a rule and not a theorem. 我们称这个法则为原理而不称为定理。
- This article analyse the physics signification of Fourier transform by Hugens principle and Fraunhofer diffraction. 摘要用惠更斯-菲涅耳原理,单缝夫琅和费衍射分析了傅利叶变换的物理意义。
- We have thus arrived at the very important theorem. 这样我们就得了一条很重要的法则。
- The theorem may be explained as follows. 这条原理可以这样来阐述。