您要查找的是不是:
- In this paper,we establish the Mann iteration process with errors for nonexpansive mapping in uniformly convex Banach space,and generalize corresponding results of Reich to the Mann iteration process with errors. 本文首先在一致凸 Banach空间中对非扩张映射讨论了带误差的 Mann迭代过程的一些特性 .;然后将 Reich的相应定理推广到带误差的 Mann迭代过程
- An Implicit Iterative Process for a Finite Family of Nonexpansive Mappings in Uniformly Convex Banach Space 一致凸Banach空间上有限个非扩张映象的隐式迭代过程
- The Convergence Theorms for Asymptotically Non-expanstive Mapping in a Uniformly Convex Banach Space 一致凸Banach空间渐近非扩张映像的收敛定理
- Weak Convergence Theorems for Finite Nonexpansive Mappings in Uniformly Convex Banach Space 一致凸Banach空间有限个非扩张映射的弱收敛
- Asymptotically Quasi-nonexpansive Mapping with Error Members in a Uniformly Convex Banach Space 一致凸Banach空间上渐近准非扩张映象
- Note on Convergence Theorems of Iterative Sequences for Asymptoticallly Non-Expansive Mapping in a Uniformly Convex Banach Space 关于一致凸的Banach空间上的渐近非扩张映象的迭代序列的收敛性定理的注记
- uniformly convex Banach space 一致凸Banach空间
- A Convergence Theorem of Fixed Point for Asymptotically Non-expansive Mappings in Uniformly Convex Banach Spaces 一致凸Banach空间中渐近非扩张映像不动点的收敛定理
- uniformly convex Banach spaces 一致凸Banach空间
- Prove som e m apping oftheorem s of perturbations for ranges ofm axim al m onotone operatorT in a realreflexive and strictly convex Banach space X. 在实自反、严格凸Banach 空间X 中,论证了关于极大单调算子T 值域的扰动定理
- Iterative Approximation of Fixed Points for Asymptotically Nonexpansive Type Mappings with Error Member in Uniformly Convexity Banach Spaces 一致凸Banach空间中渐近非扩张型映象不动点的具误差的迭代逼近
- uniforly convexity Banach spaces 一致凸Banach空间
- We proved that every closed maximal linear subspace in a Banach space is strongly orthogonally complemented if and only if the space X is reflexive and strictly convex. 证明了闭的极大线性子空间是强正交可补的充分必要条件是;空间X是自反严格凸的.
- Abstract: We proved that every closed maximal linear subspace in a Banach space is strongly orthogonally complemented if and only if the space X is reflexive and strictly convex. 文摘:证明了闭的极大线性子空间是强正交可补的充分必要条件是;空间X是自反严格凸的.
- It was proved that,when the objective function was uniformly convex,this algorithm possessed superlinear convergence. 证明该算法在目标函数为一致凸时具有局部超线性收敛性。
- In this chapter, some conclusions are extended to the real Banach space under different mappings, and a proof on the equivalence of Mann and Ishikawa iterative processes with errors under the uniformly pseudo-contractive mapping is given. 本章主要在已有结论的基础上,又将某些结论推广至实Banach空间中的不同映射情形下,并且还给出了一个带误差的Mann迭代序列的收敛性与带误差的Ishikawa迭代序列在一致伪压缩映射下的收敛性的等价性定理的证明。
- Uniformly convex normed linear space 一致凸赋范线性空间
- q- uniformly smooth Banach space q-一致光滑的Banach空间
- Abstract: In this paper,a notion on "unit sphere" and "uniformly convex" is introduced in probabilistic normed spaces,it is proved that existence and uniqueness on the optimal approximate element. 文摘:该文在概率赋范空间中引进了"单位球"和"一致凸"的概念,证明了"最佳近似元"的存在性和唯一性。
- Klaus Deimling, Ordinary Equations in Banach Space, Lecture Notes in Mathematics 596, Springer-Verlag, 1977. 郭大钧;孙经先著;抽象空间中的微分方程;山东科学技术出版社.