您要查找的是不是:
- This is called a normal system of differential equations. 这称为正规微分方程组。
- First, the differential equations of motion of the system are established. 列出系统的运动微分方程。
- Numerical solution of differential equations. 微分方程的数值解。
- The underlying method is based on the simple wave solutions of a system of hyperbolic partial differential equations. 基本的方法是以双曲型偏微分方程组的简单波解为根据的。
- The non-existence of radially non-increasing positive solutions is derived for a system of quasi-linear elliptic differential equations first of all. 摘要首先得到一类拟线性椭圆型方程组正解的先验界估计和衰减性质,从而推出该方程组的径向非增正对称解的不存在性结果。
- An analog computer used to solve differential equations. 用来解微分方程的一种模拟计算机。
- To some extent, his work pays dividends in differential equations. 他的工作在某种程度上给微分方程带来了好处。
- The analog computers were designed to solve differential equations. 模拟计算机是被设计解决微分方程的。
- If a system of differential equations is met, it is labor to solve it straightly without using matrices operations. 若出现联立微分方程组时,我们不利用矩阵而尝试直接来求解方程组的话,那是非常累人的。
- This paper gives out the analytical solution for the quasilinear system of partial differential equations. 本文给出了这两个拟线性偏微分方程组的定解问题的一个求解方法及解析解表达式。
- Differential Equations and Their Applications 4th ed. 微分方程及其应用第4版。
- Numerical solution of second order differential equations. 二阶微分方程的数值解。
- The Basic Theory of Stability of Functional Differential Equations. 泛函微分方程(超中立型)稳定性的基本理论
- TPBVP Solution reconciliation partial differential equations. 详细说明: 内容包括:解线性代数方程组、插值、数值积分、待殊函数、函数逼近、随机数、排序、特征值问题、数据拟合、方程求根和非线性方程组求解、函数的极值和最优化、傅里叶变换谱方法、数据的统计描述、解常微分方程组、两点边值问题的解法和解偏微分方程组。
- Assume the parameter uncertainty is norm-bounded and the system dynamic is modeled by Ito-type stochastic differential equations. 假设参数不确定性是范数有界的并且系统的动态方程是由伊藤微分方程所描述的。
- The paper discusses the different attributes of singularity induced bifurcation(SIB) between power system differential algebraic model(DAE) without dissipation term and with . 该文系统地讨论了无阻尼项和包括阻尼项的电力系统微分代数模型(DAE)发生奇异诱导分岔(SIB)的特点;
- On the basis of establishing the differential equations of motion of the pantograph and catenary system, the TSG3 pantograph has been simulated. 在建立弓网系统运动微分方程的基础上,本文对TSG3受电弓几个主要参数进行了模拟计算。
- Lorenz modeled the location of a particle moving subject to atmospheric forces and obtained a certain system of ordinary differential equations. 洛伦兹模拟了经受大气力粒子运动而获得普通微积分方程一个确定系统。
- Ordinary differential equation arnold v. I. 常微分方程。
- Do you know how to solve the differential equation? 你知道如何解这个微分方程吗?