您要查找的是不是:
- In this paper. we study the Lagrange bisection at the symplectic groupoids. 摘要本文研究了辛群胚上的拉格朗日双截面。
- In this paper,we study the application of the momentum mapping to a Possion G-space and symplectic groupoids. 本文研究了矩映射在泊松G-空间及辛群胚中的应用。
- symplectic groupoid 辛群胚
- TWO KINDS OF SYMPLECTIC GROUPOIDS STRUCTURE ON THE COTANGENT BUNDLE OF LIE GROUP 李群的余切丛上的两种辛群胚结构
- The proof of the second part makes use of some idea of groupoid. 第二部分的证明用到了群胚的基本思想。
- The symplectic method provides a way for solving other problems. 这种辛方法也为求解其他问题提供了一条路径。
- The characteristic of conservative system is symplectic conservation. 在物理与力学中有大量保守体系的分析。
- The symplectic method can provide a new idea for researching others problem. 这种方法也为研究其他问题提供了一条路径。
- Through these studies, the study of rough set's algebraic properties are spreaded to right involution groupoid. 这些结果将粗糙集代数性质的研究扩展到右对合广群这个代数系统中。
- Yao Weian and Zhong Wanxie, Symplectic Elasticity, Beijing, Higher Education Press, 2002. 168姚伟岸、钟万勰,辛弹性力学,北京:高等教育出版社,2002
- With the aid of the completeness of symplectic eigensolutions, a close method was presented. 利用辛本征解空间的完备性,建立一套封闭的求解问题方法。
- Meanwhile, an effective method for end conditions was given in the symplectic space. 同时给出了一种辛空间中处理端部条件问题的有效方法。
- The dual equations and conditions of the corresponding boundary are obtained directly in the symplectic space. 在辛几何空间中直接描述正则方程和对应的边条件。
- And a numerical algorithm for constructing a random symplectic orthogonal matrix is put forward. 研究了现有两种构造随机正交辛矩阵算法的特点;
- In this paper,Lie group,Symplectic manifolds,Groupoids are treated as fundamental research subjects . 本文主要以李群、辛流形及群胚等为基本研究对象。
- Two-dimensional problems of thermo-viscoelasticity in the symplectic system were described. 摘要在辛体系下描述了二维热粘弹性力学问题。
- This catastrophe, but also that赫里布symplectic Forever nailed on the historical pillar of shame. 这一浩劫,也使辛那赫里布永远被钉在历史的耻辱柱上。
- We've also proposed a new discrete symplectic algorithm inspired by the finit element method. 反之,利用有限元离散相空间,得到一类新的算法,称为有限元-辛算法。
- In the symplectic method, the axisymmetric and non-axisymmetric buckling modes can be obtained directly. 这种辛方法克服了传统振型函数方法的局限性,并可直接得到轴对称和非轴对称的屈曲模态。
- At last symplectic schemes of Hamiltonian system for nonlinear Schrodinger equation have been extended to higher dimension. 最后,把非线性Schr(?) dinger方程的辛格式推广到了高维,并给出了一种特殊的非线性Schr(?)