您要查找的是不是:
- semigroup homomorphism 半群同态
- It introduces the concept of power semigroup, studies the relations between homomorphism and congruence of power semigroup and obtains some perfect results. 摘要给出了幂半群的概念,研究了幂半群的同态与同余关系,讨论了它们之间的关系,并得到了一些理想的结果。
- This paper proves that the localization A_A of a semigroup A at itself is the maximal abelian group homomorphism image of A. In this case, the image set of A is exactly the maximal camcellation semigroup image of A. 证明丰群A关于自身局部化A_A是其极大Abel群同态象,这时A的象集恰为A的极大可消半群象。
- A homomorphism that maps a mathematical set into itself. 自同态一数学集映入自身的同态
- The latter two published a monograph on semigroup theory in 1961. 后面二人在 1961 年出版了半群理论的专论。
- A construction theorem for such semigroup is obtained. 给出该类半群的一个构造定理.
- It follows that every nonempty periodic semigroup has at least one idempotent. 得出了所有非空周期半群都有至少一个幂等元。
- A semigroup generated by a single element is said to be monogenic (or cyclic ). 被一个单一元素生成的半群叫做 单基因 的(或 循环 的)。
- The minimal ideal of a commutative semigroup, when it exists, is a group. 交换半群的极小理想如果存在的话是个群。
- A semigroup is said to be periodic if all of its elements are of finite order. 半群被称为 周期性 的,如果所有它的元素有着有限次序。
- The author proved that there is an abelian group homomorphism between the Grothendieck groups of ?R? and ?A?. 作者证明了在R的Grothendieck群和A的Grothendieck群之间存在一个阿贝尔群同态.
- Abstract: This paper describes a partial blind signature scheme based on the theory of bundling homomorphism. 文章摘要: 为满足电子世界一种特殊的签名需要,利用丛同态理论设计了一种部分盲签名方案。
- An element g is a test element of a group G if every homomorphism of G which keeps g fixed is an automorphism. 摘要群G的一个元素g称为G的检验元素,如果G的每一个保持g不变的自同态都是G的自同构。
- This paper describes a partial blind signature scheme based on the theory of bundling homomorphism. 为满足电子世界一种特殊的签名需要,利用丛同态理论设计了一种部分盲签名方案。
- The algorithm is tested in a small structure base.Keywrods: Structure searching, Structure homomorphism. 算法程序在一个小型结构库中进行了检测。
- For example, every nonempty finite semigroup is periodic, and has a minimal ideal and at least one idempotent. 例如,所有非空有限半群是周期性的,并有一个极小理想和至少一个幂等元。
- It is abtained that these local paracompactnesses are invariable under some order homomorphism. 这些局部仿紧性在某种序同态下是保持不变的。
- Then,two important structural theorem are obtained by the special structure of Clifford semigroup. 其次,根据C lifford半群是群强半格的特殊结构,得到了C lifford半群的幂半群的两个重要的结构定理。
- If S is a semigroup, then the intersection of any collection of subsemigroups of S is also a subsemigroup of S. 如果 S 是半群,则任何 S 的子半群的搜集的交集也是 S 的子半群。
- A semigroup S is called 2-semiband, if every element of S is a product of two idempotents of S. 摘要称半群S为2-半带,若其中每个元素都可以写为S中两个幂等元的积。