您要查找的是不是:
- Chapter 12 "Miscellany" includes a proof of the prime number theorem that "is 'elementary' in the technical sense", but, as Edwards admits, it is neither straightforward, nor natural, nor insightful. 第12章"杂集"包括一个素数定理"在技术意义上是' 初步'的"的证据, 但是,当时爱德华兹承认,天气是两者都不简单,也不自然,也不有见识。
- The prime number theorem of Gauss and Legendre approximates the number of primes less than x. 素数定理高斯和勒接近若干素数不到十。
- Its divisibility and prime number theorems overlap parts of number theory. 其可除性和质数定理部分与数论(number theory)重叠。
- The fermat-euler prime number theorem 欧拉素数定理
- prime number theorem 素数定理,质数定理
- Cray number crunchers discovered the largest prime number. 克来公司的电脑发现了世界上最大的素数。
- abstract prime number theorem 抽象素数定理
- Of, relating to, or being a prime number. 质数的,素数的属于或关于素数的
- Which number on the card is a prime number? 在卡片上哪一个数字是最初的数字?
- Any odd prime number P has (p-1)/2 quadratic residue. This is the quadratic residue theorem. 任何奇素数p有(p-1)/2个二次剩余,此就是二次剩余定理。
- Must be a prime number between 64 and 128 bytes long. 必须为长度在64字节和128字节之间的质数。
- Not all the odd numbers are prime numbers. 不是所有的奇数都是质数。
- The set of prime numbers is infinite. 素数集合是无限的。
- Do you remember your school number? Let's see whether it's a prime number or sum number. 判断一下,你们各自的学号是质数还是合数。
- NHashSize The size of the hash table for interface pointer maps. Should be a prime number. 用于指针映射接口的哈希表的大小,必须是一个素数。
- This paper gives a fast arithmetic for the RSA which includes finding the big prime number and th e fast Euclid. 本文给出了实现 RSA的快速算法 ,包括寻找大素数和欧几里德的快速实现。
- I just know the reason for using the number 24 since I learnt the concept of prime number and submultiple. 当然,我从加减开始,到乘除,再到平方和乘方。
- A prime number is a number that is has no proper factors (it is only evenly divisible by 1 and itself). 一个素数是除了自己和1以外没有别的整数可以整除它的数。
- After that, there are more discussion about odevity, prime number and Goldbach's conjecture at the dinner table. 知道学习了质数和因数的概念以后,我才知道为什么要选择24这个数字。
- After this, on late dinner table many about odd and even number, prime number and Goldbach's conjecture discussion. 在这以后,晚餐桌上多了关于奇偶数、素数和哥德巴赫猜想的讨论。