您要查找的是不是:
- prediction error data 预测误差数
- The chain status is in the error data. 链状态在错误数据中。
- A recursive prediction error algorithm which converges fast is applied to tra. 采用了收敛速度较快的递推预报误差算法训练神经网络。
- In order to demonstrate the features of SMI methods, comparison between the SMI methods and the prediction error methods (PEM) is made based on the same data sets collected from real-life application. 为说明SMI方法的特性,通过一个工厂实际例子研究对比了3种SMI基本算法和一种传统辨识算法-预测误差方法(PEM)。
- The paper introduces the grey forecasting model and analy ses its prediction error as well as application in detail. 详细介绍了灰色预测方法并分析了预测误差及其实用价值。
- In the Flat File Connection Manager Editor, in the Connection Manager Name box type Error Data. 在“平面文件连接管理器编辑器”的“连接管理器名称”框中,键入Error Data。
- An MD prediction error coding method is also proposed using low quality macroblock update. 该方案在丢包环境下取得较好的抗丢包性能。
- It is proved to have the same asymptotic statistical properties as the prediction error method(PEM). 证明了该方法与预报误差法具有相同的渐近和统计性能。
- It is highly recommended that you create your own custom error data type and declare that as the detail type in your fault contract. 强烈建议您创建自己的自定义错误数据类型,并在您的错误协定中将其声明为详细信息类型。
- The result shows that a second order ARMA model gives the best fit to the data in terms of sum of squares of prediction errors and in terms of the whiteness of the residual. 两种算法都进行了仿真,结果表明:从预测偏差的平方和及残数的空白度来看,二阶的ARMA模型会产生最佳的数据适应度。
- Before the error data is written to the file, you will include a Script component that uses script to get error descriptions. 将错误数据写入文件之前,需要包括一个使用脚本获取错误说明的脚本组件。
- In the method, the criterion of final prediction error (FPE) is employed to determine the embedding dimension of samples. 该方法应用最终预报误差(FinalPrediction Error,FPE)准则确定样本的嵌入维数。
- The best way to do this is by adding a FaultContractAttribute class with a custom serializable error data type to your operation. 执行此操作的最佳方式是将具有自定义可序列化错误数据类型的FaultContractAttribute类添加到操作中。
- Based on the method of minimum prediction error control, a multiple model adaptive controller( MMAC) for discrete time is presented. 基于最小预测误差控制器设计方法,设计离散时间系统多模型自适应控制器,并引入“局部化”方法。
- An expert system (Expert System, ES) that is used to analyze the error data obtained from the apparatus and find out the reasons is set up. 该部分建立了一个通过对齿轮误差测量数据进行原因推断的专家系统(Expert System,ES)。
- Through comparing their sums of squared error,it was concluded that prediction error algorithm-based OE model has the best precision. 通过误差平方和的比较,确定利用基于输出误差(OE)模型的预报误差法所建立的模型的精度最高。
- In maneuvering track tracking, the inaccurateness of the moving model leads to that of the forecasting center, which causes error data association. 目标跟踪过程中运动模型不准会导致预测中心不准,而预测中心不准会导致错误关联。
- Based on the method of minimum prediction error control, a multiple model adaptive controller (MMAC) for discrete time is presented. 基于最小预测误差控制器设计方法,设计离散时间系统多模型自适应控制器,并引入“局部化”方法。
- Then the NN model is trained and the average prediction error is 26.46%, which reaches the demand of environmental management. 经过网络训练,预测平均误差为26.;46%25,满足环境管理的精度要求。
- Your application can read user input from the standard input stream; write normal data to the standard output stream; and write error data to the standard error output stream. 您的应用程序可以从标准输入流读取用户输入;将正常数据写入到标准输出流;以及将错误数据写入到标准错误输出流。