您要查找的是不是:
- This paper deals with the positive definite real square matrices. 本文研究一般实方阵的正定性,给出了方阵正定的一些充分必要条件。
- Every positive definition is from memory and, therefore, inapplicable. 任何正面的定义皆来自记忆,故此一无所用。
- Positive semi-definite matrices are positive definite if and only if they are nonsingular. 正半定矩阵是正定的,当且仅当它们是非奇异矩阵。
- If a symmetrical matrix is positive definite, the determinants of all its minors are also positive. 如果对称矩阵是为正定者,它的所有子式的行列式也都是正的。
- Results linear complementary problem have unique solution when M is generalized positive definite matrix. 结果得到了当M是广义正定矩阵时,线性互补问题存在唯一解。
- In an SQP method, it is important to keep the Hessian of the objective function in QP problem to be positive definite. 此时,QP子问题有唯一解,而且,该问题的求解比较容易。
- There is positive proof that he did it. 有确切的证据证明他做了此事。
- This paper proves some Hadamard inequalities from the qualities of positive definite quadratic form. 摘要利用正定二次型的性质,给出阿达马不等式的证明。
- The title is intimidating, but chapter3 is easy to read and contains a lucid introduction to positive definite functions. 不要被书名吓到了,其实书里的第3章非常容易阅读而且对正定函数也有很明确的解释。
- Some properties of adjoint matrix are discussed. The properties are symmetry, antisymmetry, positive definite, positive semi-definite, orthogonal and characteristic value. 摘要讨论了伴随矩阵在对称、反对称、正定、半正定、正交、相似和特徵值等方面的性质。
- Based on them, some properties of the coefficient matrix A are presented when the matrix equation has a positive definite solution. 根据这两个定理,当矩阵方程有对称正定解时,给出了系数矩阵。
- Let A and B be positive definite Hermitian matrices, this paper gave a more accurate estimation uf the eigenvalues of AB. 设A、B是两个n×n正定厄米特矩阵,本文给出乘积AB的特征值上、下限的一个更精确估计。
- In the discussion of Euclid space ,the matter if n order real symmetric matrix A is positive definite remained important in the theory of matrix . 讨论Euclid空间中n阶实对称矩阵A是否正定,一直是矩阵理论中的重要问题。
- The title is intimidating, but chapter 3 is easy to read and contains a lucid introduction to positive definite functions. 不要被书名吓到了,其实书里的第3章非常容易阅读而且对正定函数也有很明确的解释。
- Finally, we extend the support theory of symmetric positive definite matrices to general (including indefinite and nonsymmetric) matrices. 最后,我们将适用于对称正定矩阵的支撑理论推广到一般的矩阵(包括不定的和非对称的矩阵)。
- The positive definite geometric programming is transferred into a nolinear programming with constraints of linear equality by duality principle. 在对偶理论作用下约束正定式几何规划转变为线性等式约束下的非线性规划。
- In this paper, some mistakes in papers [3-6] are pointed out. Some Determinantal inequalities on complex positive definite matrix are also presented. 摘要本文指出了文献[3-6]中的一些不正确的结论,并给出了复正定矩阵的行列式不等式。
- MCHOLSK.rar,2KB,下载 2 次,Subroutine MCHOLSK :To solves a hermitian positive definite set of complex linear simultaneous equations (AX=B) using the Cholesky decomposition method. 下载11次;在C++环境下通过编程输入距阵实现列主元高斯消元法解方程组.
- We extend the determinant inequality of generalized real positive definite matrices that is advanced by paper [3]. Moreover we give its convex inequality. 摘要推广了文献[3]中的广义实正定矩阵的行列式不等式,同时给出了广义实正定矩阵的凸性不等式。