您要查找的是不是:
- Click Date in the Calendar Time hierarchy, and then review the properties of the Date level in the Properties window. 在“日历时间”层次结构中单击“日期”,然后在“属性”窗口中查看“日期”级别的属性。
- Expand the levels in the Calendar Time hierarchy to review the members of the Date level. 展开“日历时间”层次结构中的各个级别,以查看“日期”级别的成员。
- The paper offers polynomial time algorithm of the functional all-terminal reliability of cordal ring. 给出了弦环的实用全终端可靠度的一种计算方法;此方法是多项式时间的.
- Theorem 4.1 Algorithm 4 can solve the problem (P) by using at most 2k-1 matchings in polynomial time. 定理4.;1 算法4能够在多项式时间内给出问题(P)的一个用2k-1次匹配的解。
- Finally, a polynomial time algorithm for solving an optimal cover of FD set is given. 最后给出了一个求FD集最优覆盖的多项式时间算法。
- In the Metadata pane, expand Order Date and then drag the Order Date.Calendar Time hierarchy to the Drop Filter Fields Here area of the Data pane. 在“元数据”窗格中;展开“订购日期”;然后将Order Date.;Calendar Time层次结构拖到“数据”窗格的“将筛选器字段拖至此处”区域。
- Use the Choose Time Calculations page to define the resolution of the new time calculations to be created for an existing time hierarchy. 使用“选择时间计算”页可以定义要为现有时间层次结构创建的新时间计算的解析方法。
- But the language constructed there is indeed an unnatural one because the construction needs to run all polynomial time Turing machines. 但 Lander给出语言并不是一个自然的语言因在该语言的构造中需运行所有多项式时间的图灵机 .
- It is impossible to tackle all combinatorial optimization problems (COP) in deterministic polynomial time with accurate solution. 由于组合优化问题的解空间十分庞大,使用精确求解方法无法在确定多项式时间内求得它的最优解。
- Yet, it cannot be expected that an algorithm can find, in polynomial time, a solution to an arbitrary GCP instance, because the GCP is NP-hard. 由于对于任意一个图着色例子而言,没有一种算法可以在多项式的时间内找到它的解,因此图的着色问题是一个NP难的问题。
- Meantime,the polynomial time algorithm is suggested.The method provides a new way for the bilevel decision problem and multi-level decision making. 同时,在上下层问题独立求解时,引入了一种多项式的时间算法,为两层以及多层决策问题提供了新的求解途径。
- The second algorithm takes polynomial time in the size of input.This algorithm effectively finds a minimum cover for FDs propagated from XML keys. 第二个算法需要花费输入集合的多项式时间倍,此算法有效地计算来自XML关键字的函数依赖最小覆盖的算法。
- It's commonly believed that no polynomial time algorithms exist for such formula satisfiability problems,since they belong to the NPC class. 布尔表达式的判定是NPC问题,用回溯法就能解决这一问题(只要变量不是很多)。
- In this paper, we study the undirected minimum-cardinality feedback vertex set problem in outer-planar graphs and present a polynomial time algorithm to solve it. 本文讨论外平面图的反馈点集并给出了一个求外平面图最小反馈点集的多项式时间算法。
- Devise a genetic algorithm to solve the Economic Lot and Delivery Scheduling Problem-ELDSP, and compared with heuristic algorithm and polynomial time algorithm. 设计了基于经济批量与交货期问题(ELDSP)的遗传算法。
- The interior point method is a polynomial time algorithm for solving linear programming problem, and its number of iterations is independent on the size of system. 内点法是一种求解线性规划问题的多项式时间算法,其显著特征是其迭代次数与系统规模关系不大。
- To this day, researchers have found only a few other quantum algorithms that appear to provide a speedup from exponential to polynomial time for a problem. 到目前为止,研究人员只找到少数的量子演算法,可以将一个问题的计算所需时间,由指数时间降到多项式时间。
- AKS algorithm was proposed by three computer scientists in India in Aug 2002.This algorithm can unconditionally determine whether an input number is a prime in polynomial time. AKS算法是3位印度的计算机科学家于2002年8月提出的;它是一个能在输入规模的多项式时间内确定的对一个数进行素性测试的方法.
- Taking the maximum lateness as objective function, this paper develops a polynomial time algorithms for the processing sequence of the n jobs given or not given. 文中以工件的最大迟后为目标函数,对工件加工顺序预先给定和可任意时的最优分批分别给出了多项式时间算法。
- Luebke and Provan proved that the Euclidean 2-connected Steiner network problem is NP-hard, which means that there are few possibilities of existing a polynomial time algorithm for a general finite set P of points in the Euclidean plane. Luebke和Provan证明了欧几里德2-连通Steiner网络问题是NP-困难的。 这意味着对一般的平面有限点集而言,不大可能存在求解这个问题的多项式时间算法。