您要查找的是不是:
- polynomial Sturm Theorem 多项式Sturm定理
- Characteristic polynomial, Cayley-Hamilton theorem. 特征多项式和那个定理。
- Sturm' rajdista, tint' de glav'. 铁骑突出刀枪鸣。
- A complete quartic polynomial consists of 15 terms. 一个完整四次的多项式由15项组成。
- Sturm and Caramon are already here! 史东和卡拉蒙已经在这里了!
- Sturm, there's a lady to protect. |史东,这有个女士需要保护。
- Sturm: Sounds odd, what did he come here for? 听起来很奇怪,他来做什么?
- Let us restate the assertions above as a theorem. 我们把上述的断言重新表述为一个定理。
- So, Sturm, did you track down your father? |那么,史东, 你找到你父亲了么?
- Wenn sich der Sturm nicht mehr legt. 当在这世上再没了风暴。
- This paper solved some problems in elementary mathemaics with vieta theorem of polynomial. 本文应用多项式理论中Vieta定理解决了某些初等数学中的问题.
- The second proof of Theorem 26 is due to James. 定理26的第二个证明属于詹姆斯。
- Theorem g is called binomial theorem. 定理g称为二项式定理。
- This completes the proof of the convexity theorem. 这就完成了凸定理的证明。
- At last we illustrate how to use the judgement theorem and give the solve algorithm of polynomial's inverse. 最后我们用例子来说明怎样运用该判定定理,给出了求解多项式逆的算法。
- Theorem 4.1 Algorithm 4 can solve the problem (P) by using at most 2k-1 matchings in polynomial time. 定理4.;1 算法4能够在多项式时间内给出问题(P)的一个用2k-1次匹配的解。
- This calculation illustrates the theorem. 这个计算说明了这样一个定理。
- We call this principle a rule and not a theorem. 我们称这个法则为原理而不称为定理。
- A homogeneous polynomial having two or more variables. 多元齐次多项式有两个或多个变量的齐次多项式
- We have thus arrived at the very important theorem. 这样我们就得了一条很重要的法则。