您要查找的是不是:
- bounded multiplicative semigroup 有界乘法半群
- The System of Linear Equations on Multiplicative Semigroup and Inverse Lattice Problems 乘法半群上的线性方程组与晶体对势的反演
- multiplicative semigroup 乘法半群
- Aim In order to prove a semiring whose additive reduct is a semilattice and multiplicative reduct is a inverse semigroup to be a distributive lattice. 摘要目的求证加法导出是半格、乘法导出是逆半群的半环成为分配格的充要条件。
- The Structure of Multiplicative Semigroups of Quotient Rings for Gauss'Interger Ring 高斯整环的商环的乘法半群结构
- The latter two published a monograph on semigroup theory in 1961. 后面二人在 1961 年出版了半群理论的专论。
- A construction theorem for such semigroup is obtained. 给出该类半群的一个构造定理.
- It follows that every nonempty periodic semigroup has at least one idempotent. 得出了所有非空周期半群都有至少一个幂等元。
- A semigroup generated by a single element is said to be monogenic (or cyclic ). 被一个单一元素生成的半群叫做 单基因 的(或 循环 的)。
- The minimal ideal of a commutative semigroup, when it exists, is a group. 交换半群的极小理想如果存在的话是个群。
- A semigroup is said to be periodic if all of its elements are of finite order. 半群被称为 周期性 的,如果所有它的元素有着有限次序。
- The results show that multiplicative method is also effective in FFTS. 相位校正后的谱和标准谱线比较,二者基本重合。
- For example, every nonempty finite semigroup is periodic, and has a minimal ideal and at least one idempotent. 例如,所有非空有限半群是周期性的,并有一个极小理想和至少一个幂等元。
- Then,two important structural theorem are obtained by the special structure of Clifford semigroup. 其次,根据C lifford半群是群强半格的特殊结构,得到了C lifford半群的幂半群的两个重要的结构定理。
- If S is a semigroup, then the intersection of any collection of subsemigroups of S is also a subsemigroup of S. 如果 S 是半群,则任何 S 的子半群的搜集的交集也是 S 的子半群。
- An implementation for computing multiplicative inverses in Galois fields GF(2m) is presented. 在扩展欧几里得算法的基础上提出了有限域乘法逆元的计算方法。
- A semigroup S is called 2-semiband, if every element of S is a product of two idempotents of S. 摘要称半群S为2-半带,若其中每个元素都可以写为S中两个幂等元的积。
- Meanwhile, the effect multiplicative noise and the parameters of the oscillator on the OAG are discussed. 而且,适当的噪声参数和振荡器参数可以使噪声情况下的输出幅度增益大于无噪声时的输出幅度增益。
- In the meantime, it is proved that each orthodox semigroup with an inverse transversal can be constructed in this way. 同时证明了每个具有逆断面的纯正半群都可以如此构造。
- Methods Using partial orders on multiplicative reduct and additive reduct and relations between two partial orders. 方法加法半群和乘法半群上的偏序以及二者之间的关系。