您要查找的是不是:
- Some in-equalities for the determinants of metapositive definite matrices were discussed. 继续研究次正定矩阵的理论,给出了次正定矩阵行列式的几个不等式。
- complex metapositive definite matrix 复亚正定矩阵
- real metapositive definite matrix 实亚正定矩阵
- metapositive definite matrices 亚正定矩阵
- metapositive definite matrix 亚正定矩阵
- A CLASS OF METAPOSITIVE DEFINITE SQUARE MATRIX 一类亚正定矩阵
- metapositive definite sub-Hermite matrix 次正定Hermite矩阵
- metapositive definite complex matrix 次正定复矩阵
- Finally,a new partial ordering in the subset of universal nonnegative definite matrices is defined and. 最后讨论了泛非负定子集类上的一种新的矩阵偏序的性质与充要条件。
- Finally, we extend the support theory of symmetric positive definite matrices to general (including indefinite and nonsymmetric) matrices. 最后,我们将适用于对称正定矩阵的支撑理论推广到一般的矩阵(包括不定的和非对称的矩阵)。
- Two sufficient conditions of subpositive definite matrices were established,and some applications in devotion output and control theory were given. 建立了亚正定阵的两个充分条件,并给出它们在投入产出和控制理论中的一些应用。
- metapositive definite(semidefinite) martrix 亚(半)正定矩阵
- We extend the determinant inequality of generalized real positive definite matrices that is advanced by paper [3]. Moreover we give its convex inequality. 摘要推广了文献[3]中的广义实正定矩阵的行列式不等式,同时给出了广义实正定矩阵的凸性不等式。
- Results linear complementary problem have unique solution when M is generalized positive definite matrix. 结果得到了当M是广义正定矩阵时,线性互补问题存在唯一解。
- This paper gives some properties and equivalence conditions about subpositive definite matrix, then them were proved. 摘要文章给出了亚正定矩阵的一些性质、等价命题及其证明。
- On this paper it is, give the necessary and sufficient condition of sub-positive definite matrix for sum, product, direct product and circular product of the quaternion matrices. 摘要给出了四元数矩阵的和、乘积、直积与圈积为亚正定矩阵的充要条件。
- Positive definite matrix occupies a very important position in matrix theory, and has great value in practice. 摘要正定矩阵在矩阵论中占有十分重要的地位,在实际中也有广泛的应用价值。
- In this paper, some mistakes in papers [3-6] are pointed out. Some Determinantal inequalities on complex positive definite matrix are also presented. 摘要本文指出了文献[3-6]中的一些不正确的结论,并给出了复正定矩阵的行列式不等式。
- Emphasis is given to topics that will be useful in other disciplines, including systems of equations, vector spaces, determinants, eigenvalues, similarity, and positive definite matrices. 主要强调一些对其他学科很有用处的内容,包括方程系统,向量空间,行列式,本征值,相似矩阵和正定矩阵。