您要查找的是不是:
- Before the advent of mathematical splines, designers used physical splines to draw curves. 在数学样条出现之前,设计者利用物理样条绘制曲线。
- mathematic splines 学样条函数
- In this treatise, we emphasize first-order splines. 在这一处理中,我们强调一级样条。
- Describes cardinal splines and how to draw them. 描述基数样条以及如何绘制基数样条。
- Shows how to draw Cardinal and Bezier splines. 演示如何绘制基数样条和贝塞尔样条。
- Quadratic splines need at least 3 points. 二次曲线样条至少需要3个点。
- Cubic splines need at least 5 points. 三次曲线样条至少需要 5 个点。
- Pick the splines you wish to union. 选择你想合并的曲线。
- Bezier splines need 4 points for each segment. 贝塞尔曲线样条每段需要4个点。
- Bezier splines need 3 points for each segment. 贝塞尔曲线样条每段需要 3 个点。
- Beveling the splines makes nice round edges. 倒角使漂亮的曲线轮边缘。
- The mathematic form of computer spline is a set of recursion formula which keep away from solution of inear equations. 计算机样条的数学形式是一组递推公式,避免了线性方程组的求解。
- Carl De Boor A Practical Guide to Spline. 样条函数实践指导。
- Describes a Bzier spline and how to draw one. 描述贝塞尔样条以及如何绘制贝塞尔样条。
- Outside surface is a spline through points. 外表是通过点的齿条。
- Adds a spline curve to the current figure. 向当前图形添加一段样条曲线。
- Creates an array of four points to define a spline. 创建一个包含四个点的数组来定义样条。
- The tension is shown for each spline. 每个样条都显示了张力。
- Spline function method of interpolation. 样条函数插值法。
- Six features of some mathematic models are compared breadthwise. 从6个特徵方面横向比较了部分优化数学模型的研究成果;