您要查找的是不是:
- We proved that every closed maximal linear subspace in a Banach space is strongly orthogonally complemented if and only if the space X is reflexive and strictly convex. 证明了闭的极大线性子空间是强正交可补的充分必要条件是;空间X是自反严格凸的.
- Abstract: We proved that every closed maximal linear subspace in a Banach space is strongly orthogonally complemented if and only if the space X is reflexive and strictly convex. 文摘:证明了闭的极大线性子空间是强正交可补的充分必要条件是;空间X是自反严格凸的.
- Completely uncovered basis in linear subspace set 线性子空间的并集完全不覆盖的基
- simple direct sum linear subspace 单直和子空间
- The state space of piecewise linear dynamic system is cut into some linear subspaces by several switching surfaces. 分段线性动态系统的状态空间被切换面分割成若干个线性子区间。
- Singer I.,Best Approximation in Normed Linear Space by Elements of Linear Subspace,Springer,1970 蒋鸣和、徐康康等,线性赋范空间中最佳联合逼近的特征,计算数学,6:3(1984),261-272
- Necessary and Sufficient Conditions for Every Closed Maximal Linear Subspace to be Strongly Orthogonally Complemented in Banach Spaces Banach空间上闭线性子空间强正交可补的充分必要条件
- linearity subspace 线性子空间
- 77. We proved that every closed maximal linear subspace in a Banach space is strongly orthogonally complemented if and only if the space X is reflexive and strictly convex. 证明了闭的极大线性子空间是强正交可补的充分必要条件是;空间X是自反严格凸的.
- right one-dimensional linear subspaces 右一维线性子空间
- grouped linear subspace model 分组线性子空间模型
- linear subspace 线性子空间
- Projection of the hamiltonian onto Krylov subspace. 听 R_TYPE, allocatable :: h(:, :)听 听 听 听 !
- selfadjoint linear subspace 自伴线性子空间
- proper fuzzy linear subspace 非平凡模糊空间
- invariant linear subspace 不变线性子空间
- Upper Rough Linear Subspace 上粗线性子空间
- fuzzy linear subspace 模糊线性空间
- Used to adjust the linearity of amplifiers. 背景说明:用于调节放大器的线性。
- A specified arrangement used in ordering. An order need not be linear. 一种在排序中使用的特定排列。排列的次序不必是线性的。