您要查找的是不是:
- On A Subvariety of An Idempotent Semiring 关于幂等元半环簇的一个簇
- Variety of Idempotent Semiring 幂等元半环
- idempotent semiring 幂等元半环
- Ceiba insignis (Kunth) Gibbs et Semir. 美丽异木棉
- The "get" method should be used when the form is idempotent (i.e. 上面几句话在我们的实际运用中有什么作用呢?
- This method does not need to be either safe or idempotent. 该方法不需要安全或者等幂。
- This idempotent ultrafilter enables us to find an appropriate infinite set. 这个幂等的超滤子能使我们找到一个适当的无限集。
- The concept and the universal property of fractional semiring are given. 给出了分式半环的概念和泛性质.
- It follows that every nonempty periodic semigroup has at least one idempotent. 得出了所有非空周期半群都有至少一个幂等元。
- If it is finite and nonempty, then it must contain at least one idempotent. 如果它是有限和非空的,则它必须包含至少一个幂等元。
- The closure is idempotent : the closure of the closure equals the closure. 闭包是幂等 的: 闭包的闭包等于闭包。
- It is said that the server, Tecent, and Semir had deleted the advertisement . 据说,腾迅和森马不再播放那个广告了。
- Letting F be a semifield,a kind of matrix semiring FN is defined and some important properties of FN are discussed. 设F是半域,在F上定义一类矩阵半环FN,讨论了FN的一些重要性质。
- Some equivalent statements are obtained concerning a semiring becoming a distributive lattice. 给出了该类半环成为分配格的几个等价命题。
- Results Some equivalent statements are obtained concerning a semiring becoming a distributive lattice. 结果给出了该类半环成为分配格的几个等价命题。
- It is proved that every nonzero ideal in a finite-dimensional semi-simple algebra over a field is generated by an unique central idempotent. 证明了域上有限维半单代数的每一个非零理想由唯一的中心幂等元生成。
- For example, a service that inquires about the progress of an order is both safe and idempotent. 比如,查询订单进展情况的服务既是安全的也是幂等的。
- Functions that satisfy these conditions are called deterministic or idempotent functions. 满足这些条件的函数称为确定型或等幂函数。
- This paper gives the Bellman inequalities of idempotent matrix on the some conditions. 给出了幂等矩阵在一定条件下的Bellman不等式
- Aim In order to prove a semiring whose additive reduct is a semilattice and multiplicative reduct is a inverse semigroup to be a distributive lattice. 摘要目的求证加法导出是半格、乘法导出是逆半群的半环成为分配格的充要条件。