您要查找的是不是:
- Application of Euler Theorem and Binomial Surplus Theory in Under-Communicationon Internet Euler定理和二项同余式在网上秘密通信中的应用
- euler theorem 欧拉定理
- This leads us to another contribution of Leonhard Euler to graph theory, nam ely Euler's polyhedron theorem or simply Euler's formula. 这是我们引向L·尤拉对图论的另一个贡献,即尤拉多面体定理,或简称尤拉公式。
- Let us restate the assertions above as a theorem. 我们把上述的断言重新表述为一个定理。
- This leads us to another contribution of Leonhard Euler to graph theory, namely Euler's polyhedron theorem or simply Euler's formula. 这是我们引向L·尤拉对图论的另一个贡献,即尤拉多面体定理,或简称尤拉公式。
- The second proof of Theorem 26 is due to James. 定理26的第二个证明属于詹姆斯。
- Theorem g is called binomial theorem. 定理g称为二项式定理。
- This completes the proof of the convexity theorem. 这就完成了凸定理的证明。
- Finally,the generalized Euler eigenvalue and the generalized Gauss Bonnet Theorem and the generalized Euler's formula are given to polyhedra. 最后给出多面体的广义欧拉特征值、广义 Gauss- Bonnet定理及广义欧拉公式 .;这些理论和方法;共同构成实体模型边界表示的拓扑与几何一致性检验的有效工具
- Secondly,a strict definition is given to polyhedra,and the conditions are given for applying Euler's formula and Gauss Bonnet Theorem to polyhedra. 对多面体进行严格的定义 ;给出欧拉公式及 Gauss- Bonnet定理对多面体的应用条件 .
- This calculation illustrates the theorem. 这个计算说明了这样一个定理。
- We call this principle a rule and not a theorem. 我们称这个法则为原理而不称为定理。
- We have thus arrived at the very important theorem. 这样我们就得了一条很重要的法则。
- The theorem may be explained as follows. 这条原理可以这样来阐述。
- Lutheran establishment in 1943, freedom, Euler Township 3. 1943年设立信义、自由、欧拉3个乡。
- This method helps to obtain a remarkable theorem. 这一方法有助于得出一著名的定理。
- His theorem can be translated into simple terms. 他的定理可用更简单的术语来解释。
- Theorem 2 ABd method is absolutely stable. 定理4 PAEI方法在M‘/2范数意义下是绝对稳定的.
- The main results are theorem 5 anc theorem 9 . 主要结果是定理5和定理9,宅是文[4]的继续。
- This is the "Kos theorem" Wu edition. 这是 “科斯定理”的张五常版。