您要查找的是不是:
- damping harmonic oscillator 阻尼振子
- A time-dependent damped harmonic oscillator with a force quadratic in velocity 受与速度平方成正比的力的变频率谐振子
- PROPAGATOR AND EXACT WAVE FUNCTION OF THE TIME-DEPENDENTLY DAMPED HARMONIC OSCILLATOR 含时阻尼谐振子的传播子与严格波函数
- The general solution for a damped harmonic oscillator with a force quadratic in velocity 受到与速度平方成正比的力的谐振子的普遍解
- Quantum Mechanical Treatment of a Damped Harmonic Oscillator Without a Driving Force 无外界驱动力阻尼谐振子的量子力学处理
- No atom behaves precisely like a classical harmonic oscillator. 任何一个原子的性能都不会同经典谐振子完全相同。
- For a harmonic oscillator the energy levels are evenly spaced. 对谐振子来说,能级是等间隔的。
- We can work out positions of a harmonic oscillator by numerical methods. 我们可以按数值方法计算简谐振子的位置。
- Thus far we have negative frictional effects in the harmonic oscillator. 到现在为止,我们一直没有考虑谐振子中的摩擦效应。
- Thus far we have negated frictional effects in the harmonic oscillator. 到现在为止,我们一直没有考虑谐和振荡器中的摩擦效应。
- damped harmonic oscillator 阻尼简谐振子
- The case of a harmonic oscillator driven by sinusoidally varying force is an extremely important one in many branches. 在许多领域中受正弦变化力策动的谐振子是一种十分重要的运动。
- The harmonic oscillator is an exceptionally important example of periodic motion. 谐振子在周期运动中是特别重要的。
- In this section we will increase our quantum-mechanical repertoire by solving the Schroedinger equation for the one-dimensional harmonic oscillator. 本节我们将用求解一维谐振子的薛定谔方程以提高我们的量子力学技能。
- Quantum dot gain spectra based on harmonic oscillator model are calculated including and excluding excitons. 基于谐振子模型的量子点能级;计算了包括和排除激子影响时多能级的增益谱.
- The calculation method for the vibrational partition sums Qvib used is the harmonic oscillator approximation. 其中,转动配分函数考虑了离心扭曲修正,振动配分函数采用谐振子近似。
- Quantum invariant eigenvalue and eigen function of quantum invariant operator of time-dependent damped harmonic oscilator 含时阻尼谐振子的量子不变量算符及其本征值和本征函数
- This is a most useful form of the harmonic oscillator Hamiltonian and it will be encountered in several subsequent developments. 这是谐振子哈密顿算符最有用的形式,在下文中还会碰到这个表达式。
- The ground state energy and the wave function of a linear harmonic oscillator are solved by Euler equation comforted to functional extremum. 利用泛函极值满足的Euler方程 ;解出了线性谐振子的基态能量和波函数 .
- Mesoscopic double resonance circuit with complicated coupling is quantized by the method of harmonic oscillator quantization and linear transformation. 摘要对介观复杂耦合电路作双模耦合谐振子处理,将其量子化。