# commutator ring

• 整流子夹环

## commutator ring的用法和样例：

### 例句

1. Let D_(l+1)(R) be the orthogonal Lie algebra over a commutative ring R with 2 invertible and m_1 an l+ 1 upper triangular matrix.
设D_(l+1)(R)表示2为单位交换环R上的2(l+1)阶正交李代数。 若记m_1是R上的l+1阶三角矩阵，而是D_(l+1)(R)可解子代数。
2. A commutative ring with unity having no proper divisors of zero, that is, where the product of nonzero elements cannot be zero.
整环，整域：一个单位元素都不是零的真约数，即，非零元素的乘积不为零的交换环
3. Let R be a commutative ring without zero-divisor,R is called a quasi-valuation ring,if it contains a non-zero element a such that any non-zero element of R divides a power of a.
一个无零因子的交换环R称为拟赋值环,如果R中有一个非零元素a,使得R的任意非零元都整除a的某个方幂。
4. The fundamental theorem of arithmetic is an important and basic theorem of theory of number and plays an important role in modern commutative ring theory.
算术基本定理是初等数论中一条非常基本和重要的定理,它所体现的唯一因子分解的思想,在现代交换环理论中起着非常重要的作用。
5. See invertible matrix for more.More generally, a square matrix over a commutative ring R is invertible if and only if its determinant is invertible in R.
更一般地，一元素在一可交换环R内的方阵是可逆的若且唯若其行列式在R是可逆的。
6. She had the sapphire set in a gold ring.
她把那枚蓝宝石镶在金戒指上了。