您要查找的是不是:
- The cauchy integral formula and cauchy integral theorem are discussed in this paper. 本文主要讨论双解析函数的 Cauchy积分公式 ,Cauchy积分定理等问题。
- We present a new proof of Cauchy integral theorem by using harmonic analysismethod, which is simpler than Goursat's proof. 我们利用调和分析的方法给出了柯西积分定理的一个新的证明;我们的证明比古莎所给出的证明简单.
- A New Proof of Cauchy Integral Theorem 柯西积分定理的一个新证明
- 2.Grip expertly Cauchy Integral Theorem and its applications; 2.熟练掌握柯西积分定理及其应用;
- 3.Cauchy Integral Theorem in a simply connected domain; 3.单连通区域内的柯西积分定理;
- cauchy integral theorem 柯西积分定理,柯锡分定理
- By taking the Cauchy integral for each term of the boundary equation, the complex stress functions corresponding to the flexural loads are formulated. 经由对边界方程式取歌西积分后,便可求得对应于侧向负载之复变应力函数。
- This result is often called the integrality theorem. 此结果常称为整性定理。
- In this paper,we establish the Cauchy integral formula and Schwarz integral formula,and discuss the sufficiently and necessary condition of B-harmonic function on the hypersphere topological product domains. 建立了超球拓扑积上的Cauchy积分公式和Schwarz积分公式;并进一步讨论了超球拓扑积上B-调和函数的充要条件.
- Then the paper discusses the integration methods of it and elicit Cauchy integral formula by constructing an assistant function. 讨论了其上的积分方法,通过构造一个辅助函数,得出了Cauchy积分公式。
- By substituting the mapping function into it governing boundary equation, the complex stress functions can be obtained as a result of evaluating Cauchy integrals. 藉由歌西积分,其所对应之复变应力函数便可求得。
- Cauchy Integral Formula of Bianalytic Functions 双解析函数的Cauchy积分公式
- Integral Theorem of New There Types Abel-equations 新的三类Abel型微分方程的求积定理
- Cauchy Integral Formula of z_0 in Integral Path C z_0在积分路径C上的柯西积分公式
- An Application of Jordan's Integral Theorem 积分定理的一个应用
- Discussion of value about definite integral theorem 关于积分中值定理的教学探讨
- A Uniform Estimation of Cauchy Integral and Theorem of Partition at Singular Point in Cn Cn中一个柯西积分的一致估计及奇点分解定理
- value in definite integral theorem 积分中值定理
- Cauchy integral formula for complex harmonic functions 复调和函数的Cauchy积分公式
- This result is often called the integrality theorem 此结果常称为整性定理。