您要查找的是不是:
- The cauchy integral formula and cauchy integral theorem are discussed in this paper. 本文主要讨论双解析函数的 Cauchy积分公式 ,Cauchy积分定理等问题。
- We present a new proof of Cauchy integral theorem by using harmonic analysismethod, which is simpler than Goursat's proof. 我们利用调和分析的方法给出了柯西积分定理的一个新的证明;我们的证明比古莎所给出的证明简单.
- By taking the Cauchy integral for each term of the boundary equation, the complex stress functions corresponding to the flexural loads are formulated. 经由对边界方程式取歌西积分后,便可求得对应于侧向负载之复变应力函数。
- In this paper,we establish the Cauchy integral formula and Schwarz integral formula,and discuss the sufficiently and necessary condition of B-harmonic function on the hypersphere topological product domains. 建立了超球拓扑积上的Cauchy积分公式和Schwarz积分公式;并进一步讨论了超球拓扑积上B-调和函数的充要条件.
- Then the paper discusses the integration methods of it and elicit Cauchy integral formula by constructing an assistant function. 讨论了其上的积分方法,通过构造一个辅助函数,得出了Cauchy积分公式。
- A New Proof of Cauchy Integral Theorem 柯西积分定理的一个新证明
- Cauchy Integral Formula of Bianalytic Functions 双解析函数的Cauchy积分公式
- Cauchy Integral Formula of z_0 in Integral Path C z_0在积分路径C上的柯西积分公式
- By substituting the mapping function into it governing boundary equation, the complex stress functions can be obtained as a result of evaluating Cauchy integrals. 藉由歌西积分,其所对应之复变应力函数便可求得。
- Cauchy integral formula for complex harmonic functions 复调和函数的Cauchy积分公式
- 2.Grip expertly Cauchy Integral Theorem and its applications; 2.熟练掌握柯西积分定理及其应用;
- 3.Cauchy Integral Theorem in a simply connected domain; 3.单连通区域内的柯西积分定理;
- The kitchen is an integral part of a house. 厨房是房子不可缺的部分
- Speech is fractional; silence is integral. 讲话是分数; 沉默是整数。
- A Uniform Estimation of Cauchy Integral and Theorem of Partition at Singular Point in Cn Cn中一个柯西积分的一致估计及奇点分解定理
- 4.Grip expertly and apply the Cauchy Integral Formula and derivatives of high order formula; 4.理解罗郎级数的概念,会求出一些简单的罗郎级数的收敛域;
- The arms and legs are integral parts of a human body. 臂和腿是人体不可缺少的部分。
- The indefinite integral is an antiderivative. 不定积分是反导数。
- We can use the additive property of the integral. 我们可利用积分的可加性。
- About this theory Cauchy is very explicit in his introduction to the 1821 work. 对于这一理论高奇在他1821年著作的导言中说得非常明白。