您要查找的是不是:
- Weak duality theorem is established under generalized convexity conditions. 在廣義凸性條件下,建立了弱對偶性定理。
- The optimality conditions of saddle points, weakly duality theorem, strong duality theorem and converse duality theorem are obtained under convexity assumptions. 其次,在某種凸性假設下,研究嚴有效意義下鞍點最優性條件、弱對偶性、強對偶性、逆對偶性。
- Finally, we also give the duality theorems under the above generalized F convexity. 最後我們亦討論了(VP)在正切錐真有效解意義下的對偶性質.
- The Duality Theorem in Field Algebra of G-Spin Model G-旋模型場代數中的對偶定理
- Some weak duality, strong duality and converse duality theorems for multiobjective semi-infnite programming are given under generalized uniform V-Type I invex functions. 摘要在廣義一致V-I型不變凸函數的基礎上,研究了一類多目標半無限規劃的對偶性,得到了若干個弱對偶、強對偶和逆對偶定理。
- Linear Programming Simplex method, dual problems, dual simplex method, duality theorems, complementary slackness, sensitivity analysis and transportation problem. Students taking this course are expected to have knowledge in linear algebra. 線性規劃單純形法,對偶問題,對偶單純形法,對偶性定理,互補鬆弛性,靈敏度分析及運輸問題。學生選修本科須具備線性代數之知識。
- An improved Mond-Weir type dual for a class of multiobjective optimal controlproblems is constructed.Under vector functional invexity assumption, a number of weak and strong duality theorems are given and proved. 利用向量泛函的不變凸性,改進了Mond-Weir型對偶,給出並證明了弱對偶定理和強對偶定理。
- Lagrange Duality Theorem for Multiobjective Programming with Set Functions 集合函數多目標規劃的拉格朗日型對偶定理
- Using the related duality theories of convex analysis, we derived the duality programming, the duality theorems and the Kuhn-Tucker conditions of general multicommodity minimal cost flow problems. 內層規劃實際是單品種費用流問題;而外層問題是分離的凸規劃;使用相關的凸分析理論;導出了廣義多品種最小費用流問題的對偶規劃;對偶定理和Kuhn.;Thcker條件
- Duality Theorems of a Kind of Extremum in Topological Vector Spaces 線性拓撲空間中一類極值的對偶性定理
- weak duality theorem 弱對偶定理
- duality theorem 對偶定理
- projective duality theorem 射影對偶性定理
- fundamental duality theorem 基本對偶定理
- Gale's duality theorem 蓋爾的對偶定理
- strong duality theorem 強對偶定理
- Gale rs duality theorem 蓋爾的對偶定理
- Mond-Weir Duality Theorems of Nonsmooth Generalized Convexity Programming 非光滑廣義凸規劃的Mond-Weir對偶定理
- Let us restate the assertions above as a theorem. 我們把上述的斷言重新表述為一個定理。
- The second proof of Theorem 26 is due to James. 定理26的第二個證明屬於詹姆斯。