您要查找的是不是:
- 二階Neumann邊值問題second order Neumann boundary value problem
- 反極大值比較原理和二階Neumann邊值問題解的唯一性Anti-maximum Comparison Principle and the Uniqueness Conditions for Second Order Neumann Boundary Value Problems
- 上下解反序條件下二階泛函微分方程Neumann邊值問題解的存在性條件Existence Conditions for Second Order Neumann Boundary Value Problems of Functional Differential Equations with Upper and Lower Solutions in the Reverse Order
- Neumann邊值問題Neumann boundary value problem
- Neumann邊值Neumann boundary value
- 四階Neumann邊值問題pourth order neumann boundary value problem
- 齊次Neumann邊值homogeneous Neumann boundary value
- 六階Neumann邊值問題six-order Neumann boundary value problem
- 二階邊值問題second-order boundary value problem
- RH邊值問題RH boundary value problems
- 半正Neumann邊值問題的解和正解的存在性與多解性Existence and Multiplicity of Solutions and Positive Solutions for Semipositive Neumann Boundary Value Problems
- 間斷邊值問題discontinuous boundary value problems
- 周期邊值問題periodic boundary value problem
- 四點邊值問題four-point boundary value problem
- 與廣義p-Laplace運算元相關的非線性Neumann邊值問題解的存在性The Existence of Solution of Nonlinear Neumann Boundary Value Problem Involving the Generalized p-Laplacian Operator
- 初值-邊值問題initial-boundary-value problem
- 三階邊值問題third-order boundary value problem
- 高階邊值問題high - order boundary value problem
- 定理1:假設條件(H_2)-(H_4)成立,則奇異非線性二階微分方程Neumann邊值問題(1)-(2)存在正解。The main result of this paper :Theorem 1 Under the assumption (H1) - (H4),the second-order Neumann boundary value problem (1) - (2) has positive solution.
- 泛函邊值問題functional boundary value problem