您要查找的是不是:
- Adjoint semigroup of bounded implicative BCK-algebra 有界蕴涵BCK-代数的伴随半群
- Adjoint semigroup of bounded implicative BCK algebra 有界蕴涵BCK代数的伴随半群
- adjoint semigroup 圈乘半群
- the adjoint semigroup 对偶半群
- order adjoint semigroup 有序伴随半群
- generalized adjoint semigroup 广义圈乘半群
- ON THE ADJOINT SEMIGROUPS OF BCK-ALGEBRAS WITH CONDTION(S) 关于具有条件(S)的BCK一代数的伴随半群
- Relatienship between ideals of BCI-algebras and order filters of its adjoint semigroups BCI-代数的理想与其伴随半群序滤子的关系
- The latter two published a monograph on semigroup theory in 1961. 后面二人在 1961 年出版了半群理论的专论。
- A construction theorem for such semigroup is obtained. 给出该类半群的一个构造定理.
- This led, as we shall see, to the concept of the adjoint equation. 这就引出了,如我们将要看到的,伴随方程的概念。
- Lonely adjoint is frenzied , spends being doubted that. 皒是否应该昏沈的去度过。
- It follows that every nonempty periodic semigroup has at least one idempotent. 得出了所有非空周期半群都有至少一个幂等元。
- A semigroup generated by a single element is said to be monogenic (or cyclic ). 被一个单一元素生成的半群叫做 单基因 的(或 循环 的)。
- The proof shows that any functor which is a left adjoint is right exact. 该证明指出,任一函子,如果是一个左伴随,就右正合。
- The minimal ideal of a commutative semigroup, when it exists, is a group. 交换半群的极小理想如果存在的话是个群。
- In this paper the idea of synchronous vector and adjoint matrix are proposed. 本文提出了同步矢量和伴生矩阵的概念。
- A semigroup is said to be periodic if all of its elements are of finite order. 半群被称为 周期性 的,如果所有它的元素有着有限次序。
- The construction of adjoint algebra of a partial order set are discussed. 指出了一个偏序集的所有伴随代数都是自同构的,最后给出了伴随代数的构造。
- Associated with the notion of the transposed matrix is its complex conjugatx known to physicists as the adjoint matric. 跟转置矩阵记号相联系的是它的复共轭矩阵,物理学家称之为伴矩阵。