您要查找的是不是:
- Application of optimal binary tree in multi-branch program design 最优二叉树在多分支结构程序设计中的应用
- Optimization Binary Tree 最优二元树
- Write a function to find the depth of a binary tree. 写个程序找到一个二叉树的深度。
- And above the level established by the binary tree traversal. 并对上面建立的二叉树按层次遍历。
- The point is that polygons are stored in a binary tree. 多边形是以点的形式在二叉树中存储的。
- The multiclass SVM methods based on binary tree are proposed. 摘要提出一种新的基于二叉树结构的支持向量(SVM)多类分类算法。
- the optimal binary tree 最优二叉树
- optimal binary tree 最优二叉树
- The model is a generalization of conventional binary tree algorithm. 模型是传统的二元树形算法的推广。
- Using Binary tree to save the text in sepecific file and catalogue, Delphi. 用二叉树的算法对指定目录下的文件和目录以格式化的方法保存。
- How would you print out the data in a binary tree, level by level, starting at the top? 你将怎样以水平打印二叉树数据,水平,在顶开始?
- For some purposes a binary tree is the best solution, but usually the simpler linked list is the obvious choice. 对于某些情况,二叉树是最佳选择,但在通常情况下,更简单的链表是显而易见的选择。
- To maintain high generalization ability, the most widespread class should be separated at the upper nodes of a binary tree. 为了获得较高的推广能力,必须让样本分布广的类处于二叉树的上层节点,才能获得更大的划分空间。
- A single feature is used to partition the set of training vectors at each nonterminal node of the binary tree. 使用分词独立结构代替状语从句或并列分句;
- The small upfront compilation cost yields optimized binary code for the current environment. 较小的预先编译开销可以为当前环境产生优化的二进制代码。
- Hypercuboid and hypersphere class least covers are used to be rules of constructing binary tree. 所以,该算法采用最小超立方体和最小超球体类包含作为二叉树的生成算法。
- The article presents the recursive and non-recursive algorithms of postorder-traversing binary tree. 摘要本文论述了后序遍歴二叉树的递归算法和非递归算法。
- The binary tree consists of a single-root node and a set of terminal and nonterminal nodes. 介词十动名词短语代替定语从句或状语从句。
- Then identity-based binary tree encryption scheme is constructed.As a result, a concrete IBE-NIKU is given. 基于已有的二叉树加密构造了基于身份的二叉树加密方案及非交互式密钥更新的基于身份加密方案;
- An algorithm that traverses a general binary tree will have complexity O( 2 N ). 一个算法,遍历一般二叉树将复杂性为O(2 N)段。