您要查找的是不是:
- generalized Lagrange muhiplier 广义乘子法
- Lagrange Muhiplier Lagrange乘子
- Telesto is in Tethys' leading Lagrange point. Telesto在土卫三的拉格朗日点的前点上。
- Enforce essential boundary conditions using Lagrange multipliers. 用拉氏乘子加强本征边界条件。
- Lagrange is the lofty pyramid of mathematical sciences. 拉格朗日是数学科学中高耸的金字塔。
- These are the Lagrange's equations of a potential system. 保守系统的拉格朗日方程。
- The Lagrange method is simpler as compared to the Newton's method. 与牛顿方法相比,拉格朗日方法要简便得多。
- For the geometry depicted in Figure 2-2, the lagrange multiplier is positive. 对于图2-2中所画的几何图形来说,拉格朗日乘子是正的。
- Gauss discovered the upper limit; Lagrange discovered the lower limit. 这个上限值是高斯发现的;拉格朗日发现了下限。
- Distortion was minimized using Lagrange theory to find the optimized quantizer. 该算法小用计算方差,计算量得到明显降低。
- The Illinois River locks would be built near LaGrange and Peoria, Illinois. 伊里诺伊河上的船闸将建在伊里诺伊州的拉格兰和皮奥里亚附近。
- In this paper. we study the Lagrange bisection at the symplectic groupoids. 摘要本文研究了辛群胚上的拉格朗日双截面。
- There is also a comprehensive treatment of optimality conditions, Lagrange multiplier theory, and duality theory. 这门课程也包括了对最适化条件,拉格朗日乘数理论,和对偶理论的综合论述。
- A Theory of Variational Assimilation with Kalman Filter - Type Constraints: Bias and Lagrange Multiplier. 卡门滤波器型限制的变分同化理论:偏差和拉格朗日放大器。
- Neither Euler nor Lagrange envisioned the rich possibilities which their work on complex integers opened up. 无论Euler或Lagrange都没有预想到他们关于复整数的工作所打开的丰富可能性。
- Lagrange also asserted that the principle is true for a collection of particles and even for extended mass. 来格朗哥还断言,对于质点组而言这个原理也是正确的,甚至对广义质量也是对的。
- These relation indi- cate the general characteristics of the solution for the Lagrange problem. 这些关系式具有拉格朗日解的一般特性。
- Modal assumption method is used to build the electro-mechanical dynamic model based on Lagrange Equation. 基于假设振型法,利用分析动力学的Lagrange方程,建立了基于压电陶瓷诱发应变激振的超声电机复合定子的机电耦合动力学模型;
- A K-K-T point and corresponding Lagrange multiplier of MOP are obtained by tracking numerically this path. 数值追踪这条路径;可以得到多目标规划问题(MOP)的K-K-T点及相应的Lagrange乘子.
- The work shown in the title is accomplished by using Lagrange multiplicator method for all cases. 摘要利用拉格朗日乘子法推导并分析得出适合所有斜上抛运动情况的最大射程的条件公式和求最大射程的方法。