您要查找的是不是:
- No atom behaves precisely like a classical harmonic oscillator. 任何一个原子的性能都不会同经典谐振子完全相同。
- For a harmonic oscillator the energy levels are evenly spaced. 对谐振子来说,能级是等间隔的。
- We can work out positions of a harmonic oscillator by numerical methods. 我们可以按数值方法计算简谐振子的位置。
- Thus far we have negative frictional effects in the harmonic oscillator. 到现在为止,我们一直没有考虑谐振子中的摩擦效应。
- Thus far we have negated frictional effects in the harmonic oscillator. 到现在为止,我们一直没有考虑谐和振荡器中的摩擦效应。
- The case of a harmonic oscillator driven by sinusoidally varying force is an extremely important one in many branches. 在许多领域中受正弦变化力策动的谐振子是一种十分重要的运动。
- The harmonic oscillator is an exceptionally important example of periodic motion. 谐振子在周期运动中是特别重要的。
- In this section we will increase our quantum-mechanical repertoire by solving the Schroedinger equation for the one-dimensional harmonic oscillator. 本节我们将用求解一维谐振子的薛定谔方程以提高我们的量子力学技能。
- Quantum dot gain spectra based on harmonic oscillator model are calculated including and excluding excitons. 基于谐振子模型的量子点能级;计算了包括和排除激子影响时多能级的增益谱.
- The calculation method for the vibrational partition sums Qvib used is the harmonic oscillator approximation. 其中,转动配分函数考虑了离心扭曲修正,振动配分函数采用谐振子近似。
- This is a most useful form of the harmonic oscillator Hamiltonian and it will be encountered in several subsequent developments. 这是谐振子哈密顿算符最有用的形式,在下文中还会碰到这个表达式。
- The ground state energy and the wave function of a linear harmonic oscillator are solved by Euler equation comforted to functional extremum. 利用泛函极值满足的Euler方程 ;解出了线性谐振子的基态能量和波函数 .
- Mesoscopic double resonance circuit with complicated coupling is quantized by the method of harmonic oscillator quantization and linear transformation. 摘要对介观复杂耦合电路作双模耦合谐振子处理,将其量子化。
- The expression for radial wave function of a two dimensional harmonic oscillator is derived through an integral formula of general Lagurre function. 利用广义拉盖尔函数的一个积分公式,推导出二维各向同性谐振子的归一化径向波函数表达式。
- Mesoscopic double resonance mutual inductance and capacitance coupling circuit is quantized by the method of harmonic oscillator quantization. 摘要对介观互感电容耦合电路作双模耦合谐振子处理,将其量子化。
- The formula of energy levels of three dimensional harmonic oscillator in the uniform magnetic field is derived. The lowest energy level and degeneracy is discussed. 摘要推导出了三维各向同性谐振子在均匀磁场中的能级表达式并讨论了其最低能级及其简并度的变化。
- It works better than the [[quantum harmonic oscillator]] model, because it accounts for [[anharmonicity]], overtone frequencies, and combination frequencies. 相对[[量子谐振子]]模型,'''Morse 势'''更真实,因为它能描述[[非谐效应]],倍频,以及组合频率。
- We apply these set of rules to study three kind of typical quantum problems including harmonic oscillator, double well potential and impulse barrier penetration. 利用这套规则,我们研究了谐振子,双势阱和脉冲型势垒的透射这三种量子力学中典型问题的格林函数。
- The anisotropic harmonic oscillatar has unique degeneracy of energy levels and symmetry and under approximate conditions ,it may transit isotropic harmonic oscillator. 各向异性谐振子有其独特的能级简并和对称性,且在一定的近似条件下可过渡到各向同性谐振子。
- The paper discussed the solution of the harmonic oscillator with electric charge at the electric field in the coordinate basis and energy basis, and used the different method to deduced the eigenvalue and eigenfunction. 摘要运用不同的方法讨论了电场中带电谐振子在坐标表象和能量表象中能量本征值和本征函数的求解方法。