您要查找的是不是:
- A Simple Proof for the generalization of Cauchy mean value theorem is given. 给出Cauchy微分中值定理的推广的一个简单证明.
- The cauchy integral formula and cauchy integral theorem are discussed in this paper. 本文主要讨论双解析函数的 Cauchy积分公式 ,Cauchy积分定理等问题。
- On the proof of the Cauchy mean value theorem,we give a simple method of construction for an auxiliary function. 关于Cauchy中值定理的证明,我们给出辅助函数的一个简单的构造方法。
- Let us restate the assertions above as a theorem. 我们把上述的断言重新表述为一个定理。
- In the first part of the paper,the another form of Cauchy mean value theorem is studied. 本文的第一部分研究了Cauchy中值定理的另一种形式。
- Otherwise, the paper also discussed the same question of Cauchy random variables and got the result as theorem 1.2. 另外,本文考虑了柯西向量二次型分布同样的问题,并相应得到的两个不等式(定理1.;2)。
- The second proof of Theorem 26 is due to James. 定理26的第二个证明属于詹姆斯。
- Theorem g is called binomial theorem. 定理g称为二项式定理。
- This completes the proof of the convexity theorem. 这就完成了凸定理的证明。
- Based on the Rolle mid-value theorem, by using determinant method, the Lagrange mid-value theorem and Cauchy mid-value theorem are obtained, and some new results are discovered. 本文从罗尔中值定理出发,这用行列式理论,不仅证明了拉格朗日中值定理和柯西中值定理,还发现了一些新的结论。
- This calculation illustrates the theorem. 这个计算说明了这样一个定理。
- This paper deduces an asymptotic property for the "median point" of Cauchy Mean value Theorem by adopting the Taylor Formula and the Law of L?Hospital. 利用泰勒公式和洛必塔法则 ,推得柯西中值定理“中间点”的一个渐近性质
- We call this principle a rule and not a theorem. 我们称这个法则为原理而不称为定理。
- We have thus arrived at the very important theorem. 这样我们就得了一条很重要的法则。
- The theorem may be explained as follows. 这条原理可以这样来阐述。
- This method helps to obtain a remarkable theorem. 这一方法有助于得出一著名的定理。
- His theorem can be translated into simple terms. 他的定理可用更简单的术语来解释。
- About this theory Cauchy is very explicit in his introduction to the 1821 work. 对于这一理论高奇在他1821年著作的导言中说得非常明白。
- Theorem 2 ABd method is absolutely stable. 定理4 PAEI方法在M‘/2范数意义下是绝对稳定的.
- The main results are theorem 5 anc theorem 9 . 主要结果是定理5和定理9,宅是文[4]的继续。