您要查找的是不是:
- Cauchy s mean value theorem 柯西中值定理
- A Simple Proof for the generalization of Cauchy mean value theorem is given. 给出Cauchy微分中值定理的推广的一个简单证明.
- On the proof of the Cauchy mean value theorem,we give a simple method of construction for an auxiliary function. 关于Cauchy中值定理的证明,我们给出辅助函数的一个简单的构造方法。
- In the first part of the paper,the another form of Cauchy mean value theorem is studied. 本文的第一部分研究了Cauchy中值定理的另一种形式。
- This paper deduces an asymptotic property for the "median point" of Cauchy Mean value Theorem by adopting the Taylor Formula and the Law of L?Hospital. 利用泰勒公式和洛必塔法则 ,推得柯西中值定理“中间点”的一个渐近性质
- In the second part of the paper, the generalization of Cauchy mean value theorem is discussed and its weak form is given. 本文的第二部分讨论了Cauchy中值定理的推广,并给出了它的弱形式。
- Rolle's theorem is a special case of the mean value theorem. 罗尔定理是中值定理的一种特殊形式。
- We present a general method to prove a class of problems by Rolle's theorem,which need make tricky function by Langrange or Cauchy mean value theorem,and point out our method is feasible for these problems. 提出罗尔定理证明一类存在性问题的方法;采用拉格朗日中值定理或柯西中值定理来证明这类问题往往需要构造精巧的辅助函数;我们还指出了这种方法的一般性.
- This paper proves the converse propositions of the higher order Cauchy Mean Value Theorem and higher order Lagrange Mean Value Theorem under concave and convex function and strictly concave and convex function. 在函数凹凸和严格凹凸的条件下 ,文章引出并证明了高阶Cauchy中值定理和高阶Lagrange中值定理的 4个逆命题。
- This paper provides an inference of Rolle mean value theorem and a new structure method of auxiliary function so as to prove Lagrange mean value theorem and Cauchy mean value theorem. 文章给出罗尔中值定理的一个推论及给出辅助函数新的构造方法,来证明拉格朗日中值定理和柯西中值定理。
- Note on Cauchy Mean Value Theorem of Integral Type 积分型Cauchy中值定理的一个注记
- Another Proof for Cauchy Mean Value Theorem Cauchy中值定理的又一证法
- First, it introduces a method based on the relationship of the pixels around, and this method uses the neighboring symbol"s mean value to embed the watermark to the carrier image. 本文首先介绍了一种基于临近关系的盲水印算法,该算法利用图像的相邻像素的特征平均值对载体图像进行水印嵌入。
- Generalization of Cauchy Mean Value Theorem CAUCHY微分中值定理的推广
- Generalized expression of Cauchy mean value theorem Cauchy中值定理的一般形式
- The Note for the Cauchy Mean Value Theorem 关于柯西中值定理的一个注记
- Cauchy mean value theorem of integral type 积分型Cauchy中值定理
- In this paper, applying local mean value theorem, we prove some theorem of complex analysis. 运用局部复中值定理;我们重新证明了复分析中的几个定理.
- This paper is devoted to studying the asymptotic behavior of the intermediate point in the mean value theorem for first form curve integrals. A general result is obtained. 摘要讨论了第一类曲线积分中值定理“中间点”的渐近性质,得到了更具一般性的新结果。
- Study about the first mean value theorem for integrals, which obtain a new results on the mean value asymptotic behavior. 摘要研究积分第一中值定理,获得了其中值渐近性的一个新结果。